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Privacy Policy Specification and Audit in a Fixed-Point Logic

– How to enforce HIPAA, GLBA and all that

Henry DeYoung Deepak Garg Limin Jia Dilsun Kaynar Anupam Datta

May 12, 2010

Abstract

Organizations such as hospitals and banks that collect and use personal information are required to
comply with privacy regulations like the Health Insurance Portability and Accountability Act (HIPAA)
and the Gramm-Leach-Bliley Act (GLBA). With the goal of specification and enforcement of such prac-
tical policies, we develop the logic PrivacyLFP, whose syntax is an extension of the fixed point logic
LFP with operators of linear temporal logic. We model organizational processes by assigning role-based
responsibilities to agents that are also expressed in the same logic. To aid in designing such processes,
we develop a semantic locality criterion to characterize responsibilities that agents (or groups of agents)
have a strategy to discharge, and easily checkable, sound syntactic characterizations of responsibilities
that meet this criterion. Policy enforcement is achieved through a combination of techniques: (a) a
design-time analysis of the organizational process to show that the privacy policy is respected if all
agents act responsibly, using a sound proof system we develop for PrivacyLFP; and (b) a posthoc audit
of logs of organizational activity that identifies agents who did not live up to their responsibilities, using
a model checking procedure we develop for PrivacyLFP. We illustrate these enforcement techniques using
a representative example of an organizational process.

1 Introduction

Privacy is an important concern for organizations that collect and use personal information, such as hospitals,
clinics, banks, credit card clearing houses, customer support centers, and academic institutions. These
organizations face the growing challenge of managing privacy risks and compliance requirements. In fact,
designing organizational processes to manage personal data and ensure compliance with regulations such
as the Health Insurance Portability and Accountability Act (HIPAA) and the Gramm-Leach-Bliley Act
(GLBA) [32, 33] has become one of the greatest challenges facing organizations today (see, for example, a
recent survey from Deloitte and the Ponemon Institute [19]). This paper develops theoretically well-founded
methods to support the compliance process and presents case studies that demonstrate that the methods
apply to real privacy regulations.

Our first set of contributions pertain to privacy policy specification. We present the logic PrivacyLFP
(see Section 2), whose syntax is an extension of the fixed point logic LFP with operators of linear temporal
logic [26]. The formulas of the logic are interpreted over traces containing agent actions, which model,
for example, how agents transmit and use personal information. This logic can express common privacy
policy idioms, such as conditions on retransmission of information, obligations, notifications, opt-in/opt-out
options and disclosure purposes. The choice of the logic was guided by a comprehensive study of the privacy-
relevant sections of the HIPAA and GLBA regulations. Specifically, in examining GLBA, we found clauses
that required the use of fixed points to specify; clauses in both regulations necessitated the use of temporal
operators, real-time, and disclosure purposes. This report focuses on the logic and enforcement of policies
represented in it; formalization of all operational clauses of HIPAA and GLBA is contained in a separate
report [20].

Our second set of contributions pertain to modeling organizational processes (see Section 4). We model
organizational processes by assigning role-based responsibilities to agents. These responsibilities are also
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expressed in the same logic. The goal in designing processes is to ensure that if all agents act responsibly,
then the policy is satisfied in every execution. However, it is important to ensure that an agent can, in
fact, discharge her responsibilities. We present examples of responsibilities in PrivacyLFP that can never be
discharged, and then go on to provide a semantic definition of locally feasible responsibilities, which is in-
tended to capture “reasonable” responsibilities. To aid in designing organizational processes, we also present
easily checkable, sound syntactic characterizations of responsibilities that meet this criterion, associated
strategies for discharging such responsibilities, and theorems about the composition of such responsibilities
(Theorem 4.2).

Our final set of contributions pertain to policy enforcement (Section 5). Policy enforcement is achieved
through two logic-based methods for enforcing privacy policies. Our first method answers the question:
Does a given organizational process respect a given privacy policy? This method is based on a sound proof
system for PrivacyLFP and is described in Section 5.1. The proof system is obtained by adapting previous
proof systems for an intuitionistic logic with fixed-points, µLJ [8, 17], to our classical logic PrivacyLFP;
the soundness proof for the proof system with respect to the trace semantics is a new technical result.
Our second enforcement method audits logs of organizational activity for violations of principals’ assigned
responsibilities. It is based on a novel tableau-based model checking procedure for PrivacyLFP that we
develop and prove sound in Section 5.2. We illustrate these enforcement techniques using a representative
example of an organizational process.

The approach taken in this paper builds on contextual integrity, a conceptual framework for understand-
ing privacy expectations and their implications developed in the literature on law, public policy, and political
philosophy [27]. The primary tenet of contextual integrity is that people interact in society not simply as
individuals in an undifferentiated social world, but as individuals in certain capacities or roles, in distinctive
social contexts (e.g., health care or banking). The semantic model over which the formulas of PrivacyLFP
are interpreted formalizes this intuition, in a manner that is similar to prior work by Barth et al. [10, 11].
The conceptual factoring of policy enforcement into design-time analysis assuming agents are responsible and
posthoc auditing for responsibility violations also originated in those papers. The results of this paper push
forward the program of practical privacy policy specification and enforcement significantly by developing a
first-order logic with fixed-points that has the additional expressiveness needed to specify real privacy regu-
lations in their entirety (all privacy-relevant clauses of HIPAA and GLBA), and new enforcement techniques
based on proof-theory and auditing that work for the entire logic. In contrast, the auditing procedure in
Barth et al. [11] only works for a very restricted class of “graph-based workflows” and design-time analysis is
achieved for a less expressive propositional fragment of a temporal logic. A more detailed comparison with
prior work appears in Section 6. Concluding remarks and directions for future work appear in Section 7.

2 Policy Specification

We formally represent privacy laws and responsibilities as formulas of a new logic PrivacyLFP. PrivacyLFP
is an extension of the logic LFP [13, 28] with temporal operators, and is interpreted against traces. LFP
contains first-order quantifiers and allows definitions of predicates as greatest and least fixed-points. After
motivating the need for fixed-points in formalizing privacy regulation, we briefly review LFP and its semantics
(Section 2.1). Then we introduce PrivacyLFP’s trace-based model (Section 2.2) and its syntax (Section 2.3).
Prior work on which this paper builds [9–11] uses a different logic LPU (Logic of Privacy and Utility), which
is based on alternating-time temporal logic or ATL [3]. Although LPU suffices to express representative
examples of privacy regulations considered in prior work, it does not suffice to represent entire privacy laws
like HIPAA and GLBA [32, 33].

Specifically, LFP and PrivacyLFP can, but LPU cannot, express predicates defined as fixed-points of
equations, which are needed to formalize GLBA. To understand the need for fixed-points consider §6802(c)
of GLBA:

Except as otherwise provided in this subchapter, a nonaffiliated third party that receives
from a financial institution nonpublic personal information under this section shall not, directly
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or through an affiliate of such receiving third party, disclose such information to any other person
that is a nonaffiliated third party of both the financial institution and such receiving third party,
unless such disclosure would be lawful if made directly to such other person by the financial
institution.

Suppose that in an attempt to formalize this clause in logic, we define the predicate maysend(p1, p2,m)
to mean that entity p1 may send information m to entity p2. Then, roughly, the above clause would be
formalized by the definition below. (, denotes a definition, ⊃ denotes implication, activerole(p, r) means
that principal p is active in role r, andQφ means that φ holds in the past.)

maysend(p1, p2,m) , ∀p′.¬activerole(p1, affiliate(p′)) ∧ ¬activerole(p2, affiliate(p′)) ∧
¬activerole(p2, affiliate(p1)) ∧
(Q(send(p′, p1,m) ∧ activerole(p′, institution)) ⊃Qmaysend(p′, p2,m))

This definition is recursive because the predicate maysend reappears in the last line on the right side of the
definition. Such recursive definitions cannot be expressed easily in first-order logic or LPU. However, in LFP
such definitions can be represented either using the least-fixed point operator, µ, or using the greatest-fixed
point operator, ν, as is known from prior work [24]. In this case, the definition should correspond to the
greatest fixed point since we do not want to impose any constraints on transmission beyond those stated in
the body of the law. (A further explanation of this point appears with a precise formalization of this clause
in Section 3.)

2.1 The Logic LFP

We review the syntax and semantics of the logic LFP (Least Fixed-Point Logic) limiting our discussion to
the minimum necessary to explain our technical ideas; theory of the logic may be found in prior work [13, 28].
LFP is an extension of first-order logic with the least fixed-point operator (µX(~x).ϕ)(~t) and the greatest
fixed-point operator (νX(~x).ϕ)(~t). The former defines an implicit predicate X as the least solution of the
equation X(~x) , ϕ and checks that the tuple of terms ~t satisfies the predicate (i.e, it lies in the least
solution). Both X and ~x are in scope in ϕ and can be tacitly renamed. (νX(~x).ϕ)(~t) is similar, except that
it defines the predicate as the greatest solution of the same equation. The syntax of LFP formulas ϕ,ψ is
shown below. t denotes a first-order term structure, x, y are first-order variables that range over terms, P
denotes a predicate with a fixed interpretation, and variables X,Y denote predicates defined implicitly as
fixed-points.

ϕ,ψ ::= P (~t) | X(~t) | > | ⊥ | ϕ ∧ ψ | ϕ ∨ ψ | ¬ϕ | ∀x.ϕ | ∃x.ϕ | (µX(~x).ϕ)(~t) | (νX(~x).ϕ)(~t)

We define implication ϕ ⊃ ψ as (¬ϕ) ∨ ψ. The logic is multi-sorted, although we elide the details of sorts
here. (Details of sorts relevant to formalization of HIPAA and GLBA may be found in the companion
report [20].) In order to ensure that the least and greatest fixed-points always exist, any occurrences of X in
ϕ in (µX(~x).ϕ)(~t) and (νX, ~x.ϕ)(~t) must be under an even number of negations. The existence of the least
and greatest solutions is then a straightforward consequence of the Knaster-Tarski theorem [31].

The semantics of LFP are based on those of first-order logic, with added provision for the fixed-point
operators. Let D be an algebra matching the signature of terms and predicates of the logic, let [[ t ]]θ denote
the interpretation of the term t with evaluation (partial map from first-order variables to D) θ for its free
first-order variables and some implicit interpretation of function symbols, and let [[~t ]]θ be its component-wise
lifting to tuples. Let I denote a map from predicates symbols and predicate variables free in ϕ to relations
of respective arities over the domain D. The semantics of a formula ϕ are captured by the relation θ; I |= ϕ,
defined by induction on ϕ:

θ; I |= P (~t) iff [[~t ]]θ ∈ I(P )

θ; I |= X(~t) iff [[~t ]]θ ∈ I(X)

θ; I |= >
θ; I 6|= ⊥
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θ; I |= ϕ ∧ ψ iff θ; I |= ϕ and θ; I |= ψ

θ; I |= ϕ ∨ ψ iff θ; I |= ϕ or θ; I |= ψ

θ; I |= ¬ϕ iff θ; I 6|= ϕ.

θ; I |= ∀x.ϕ iff for all d ∈ D, (θ[x 7→ d]; I |= ϕ)

θ; I |= ∃x.ϕ iff for some d ∈ D, (θ[x 7→ d]; I |= ϕ)

θ; I |= (µX(~x).ϕ)(~t) iff [[~t ]]θ ∈ µFX,~xI,θ (ϕ)

θ; I |= (νX(~x).ϕ)(~t) iff [[~t ]]θ ∈ νFX,~xI,θ (ϕ)

In the last two clauses, FX,~xI,θ (ϕ) : 2D|~x| → 2D|~x| is the function that maps a set S of tuples, each with |~x|
components, to {~d | θ[~x 7→ ~d]; I[X 7→ S] |= ϕ}. This is a monotone map because of the constraint that every

occurrence of X in ϕ be under an even number of negations. So its greatest and least fixed points, νFX,~xI,θ (ϕ)

and µFX,~xI,θ (ϕ), exist by the Knaster-Tarski theorem [31].

Negation normal form (NNF) For every LFP formula ϕ, there is a semantically equivalent formula
in which negation is restricted to predicates (i.e, the form ¬(P ~t)). Formulas of the latter form are said
to be in negation normal form or NNF. The NNF of a LFP formula ϕ can be obtained by commuting
negations inwards with other connectives through the DeMorgan’s laws, e.g, ¬(ψ1 ∧ ψ2) is equivalent to
(¬ψ1) ∨ (¬ψ2). Importantly, fixed-points µ and ν are duals of each other: ¬((µX(~x).ϕ)(~t)) is equivalent to
(νX(~x).¬ϕ{¬X/X})(~t). The existence of equivalent NNF formulas for all of LFP is important because one
of our enforcement techniques (model-checking; Section 5.2) works only with NNF formulas. Note that the
NNF formula obtained by applying DeMorgan’s laws in this manner cannot have a subformula of the form
¬(X ~t) because of the monotonicity requirement for predicate variables X bound by µ and ν operators.

2.2 Traces, First-Order Structure, and Time

Next, we introduce a trace-based model for interpreting formulas of LFP. A salient feature of the model is
the association of real time with states, which is necessary to express several clauses from both HIPAA and
GLBA.

Traces Our execution model consists of several agents or principals p, q in changing roles r, performing
actions concurrently, resulting in a finite sequence of states s0s1 . . . sn, also called a trace σ. Each state si+1

is derived from the previous state si through a stipulated transition relation s
a(s)−−→ s′, where a(s) describes

the actions performed by the various agents in state s. A state s is a tuple (κ(s), ρA(s), ρB(s), a(s), τ(s), ι(s)).
Briefly, κ(s) maps each agent to its knowledge of private information (a formal description of knowledge is
omitted here – see the related technical report [20] for details); ρA(s) is a function that maps each agent
to the role in which it is active in state s; ρB(s) is a function from agents to sets of roles that specifies the
potential roles in which each agent may be active in future; a(s) is the set of actions performed by agents in
state s that cause a transition to the next state on the trace; τ(s) is the time point associated with the state
(described in detail below); and ι(s) is an interpretation of predicates in state s that maps each predicate
symbol P in the signature of the logic to a set of tuples of terms over a domain D. D must include, at
the least, principals, roles, time points, attributes and purposes (explained in Section 3), and messages that
agents may send to each other.

Interpretation on traces To interpret formulas of LFP over traces, we restrict ourselves to a fragment
of the logic in which the first argument of every atomic formula is the state in which the formula is to
be interpreted, so each atomic formula has the form P (s,~t) or X(s,~t). Given a trace σ, we define the

interpretation Iσ by saying that (s, ~d) ∈ Iσ(P ) if and only if ~d ∈ ι(s)(P ). Finally, we define θ;σ |= ϕ to
mean θ; Iσ |= ϕ (the latter relation was defined in Section 2.1). This approach to interpreting formulas
against traces by making state explicit in formulas is inspired by work on hybrid modal logics [12, 14, 16].
It differs from semantic relations in temporal logic where formulas do not explicitly mention state but the
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semantic relation takes the state as an argument (it has the form θ;σ; s |= ϕ). Our approach is more
expressive than temporal logic because it allows us to compare states and check their properties through
predicates in the logic. The predicate s ≤st s

′ means that state s occurs before state s′ in the trace of
interpretation, while the function next(s) returns the state following s.

Real Time Privacy laws, including HIPAA and GLBA, often contain references to durations of real time.
To represent wall-clock time in the logic, we follow prior work by Alur and Henzinger [2] and assume that each
state s is associated with a time point τ(s), which can be obtained in the logic through the function symbol
time(s). We assume standard operators <, +, −, etc. on time points and require that for consecutive states si
and si+1 on a trace, time(si) < time(si+1). As a result, s <st s

′ in the logic if and only if time(s) < time(s′).
To make it easier to access the wall-clock time, we include the so-called freeze quantifier ↓x.φ of TPTL in
PrivacyLFP (Section 2.3). ↓x.φ binds the time of interpretation to x in φ. Several examples of the use of
real time in privacy laws are presented in Section 3.

2.3 PrivacyLFP: LFP + Temporal Operators

The logic PrivacyLFP consists of an expanded syntax for LFP and is interpreted over the model defined in
Section 2.2 through a translation to LFP, which we present in this section. The need for an expanded syntax
is motivated by two reasons. First, the expanded syntax includes several operators of linear time temporal
logic (LTL) [26] as well as the freeze quantifier ↓x.ϕ of Alur and Henzinger [2], all of which make it easier
to represent time and relative order of events in privacy policies. Second, the expanded syntax elides the
need to list the state of interpretation explicitly in each predicate (which we introduced in Section 2.2 to
allow interpretation of formulas on traces), because its translation to LFP is parametrized by the state of
interpretation and embeds that state as the first argument of each atomic formula automatically.

Formulas in PrivacyLFP are denoted φ, ψ. They include all connectives of LFP, standard linear temporal
logic operators: 1φ (φ holds in some future state),Qφ (φ holds in some past state), 0φ (φ holds in every
future state), `φ (φ holds in every past state), G φ (φ holds in every state), φ U ψ (ψ holds eventually
and φ holds until then), φ S ψ (ψ held in the past and φ holds since then), and φW ψ (φ holds forever or
until ψ holds) as well the “freeze” quantifier ↓x.φ which binds to x in φ the time of interpretation. The
meaning of PrivacyLFP formulas is defined by the function (φ)@s which translates, at state s, a formula φ
in PrivacyLFP to a formula in LFP.

(P (~t))@s , P (s,~t)

((νX(~x).φ)(~t))@s , (νX(y, ~x).φ@y)(s,~t)

(1φ)@s , ∃s′. (s ≤st s
′) ∧ φ@s′

(Qφ)@s , ∃s′. (s′ ≤st s) ∧ φ@s′

(0φ)@s , ∀s′. (s ≤st s
′) ⊃ φ@s′

(`φ)@s , ∀s′. (s′ ≤st s) ⊃ φ@s′

(G φ)@s , ∀s′. φ@s′

(φ U ψ)@s , ∃s′. (s ≤st s
′) ∧ ψ@s′ ∧ (∀s′′. (s ≤st s

′′) ∧ (s′′ <st s
′) ⊃ φ@s′′)

(φ S ψ)@s , ∃s′. (s′ ≤st s) ∧ ψ@s′ ∧ (∀s′′. (s′ <st s
′′) ∧ (s′′ ≤st s) ⊃ φ@s′′)

(φW ψ)@s , (0φ)@s ∨ (φ U ψ)@s

(2φ)@s , φ@next(s)

(↓x. φ)@s , ([time(s)/x]φ)@s

In the sequel, we represent policies and responsibilities in PrivacyLFP but owing to its definability in LFP,
develop analysis methods (proof theory and model checking in Section 5) for LFP only.

3 Case Studies: GLBA and HIPAA

Our choice of the logic PrivacyLFP for analysis of privacy laws and policies is based on two real-life case
studies wherein we represent (in PrivacyLFP) all the privacy-relevant sections of the Gramm-Leach-Bliley
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Act (GLBA) [32] that regulates disclosures of private information in financial institutions like banks and
the Health Insurance Portability and Accountability Act (HIPAA) [33] that regulates protected health in-
formation. To the best of our knowledge, these are the most complete formalizations of GLBA or HIPAA
in a formal logic or language to date. Both our case studies are substantial: the encoding of GLBA spans
13 pages, while that of HIPAA requires over 100 pages (both page counts include explanations of logical
formulas). Although the details of these formalizations are the subject of a separate technical report [20],
we briefly discuss salient points of the case studies and use examples from them to illustrate the use of
PrivacyLFP in formalizing privacy regulations.

The Gramm-Leach-Bliley Act (GLBA) Our formalization of GLBA covers §6802 and §6803 of the
law and relies on §6809 for definitions of key concepts. §6802 describes several conditions, all of which must
hold in order for a disclosure of a client’s private information by a financial institution to be considered legal.
Borrowing terms from prior work on LPU, we call such conditions negative norms, symbolically denoted ϕ−.
(In contrast, positive norms ϕ+ are conditions of which any one must hold in order for a transaction to
be considered legal. GLBA does not have any positive norms but HIPAA does as we explain later.) §6803
pertains to disclosures that a financial institution must make to its clients, e.g, every financial institution
must remind all customers of its privacy policies annually (§6803(a)). Finally, §6809 defines transmissions
that are covered under this law. Roughly, it states that even transmissions made by principals acting on
behalf of a financial institution (e.g, disclosures by a financial institution’s attorneys) are covered under
the law. To account for this, we define a macro hlsend(p1, p2,m) which intuitively means that someone
acting on behalf of p1 sends message m to someone acting on behalf of p2 and write our formalization
using this predicate instead of the expected predicate send(p1, p2,m), which means that p1 sends message
m to p2. The overall formalization of GLBA takes the form shown below. The formalization retains the
structure of the law; subscripts on various ϕ’s are corresponding clause numbers from the text of the law.
Formula contains(m, q, t) means that message m contains information about attribute t of subject q, e.g,
contains(m, address,Alice) means that message m contains Alice’s address; info(d, u) is the message obtained
by tagging the raw data d with purpose u (e.g, billing); beginrole(q, r) means that principal q begins to belong
to role r.

G ((∀p′1, p′2,m′.hlsend(p′1, p
′
2,m

′) ⊃
(νmaysend(p1, p2,m).
∀d, u, q, t. (m = info(d, u)) ∧ contains(m, q, t) ⊃ ϕ−6802ae ∧ ϕ−6802be ∧ ϕ−6802c ∧ ϕ−6802d)(p′1, p′2,m′)) ∧

——
(∀q, p, r. beginrole(q, r) ∧ (r = customer(p)) ⊃ ϕ−6803a ∨ ϕ+

6803d1))

Parts of the formalization corresponding to §6802 and §6803 are separated by a horizontal line for readability.
The part above the line states that p′1 may send message m′ to p′2 only if maysend(p′1, p

′
2,m

′) holds, where the
predicate maysend(p1, p2,m) (or the permission to send) is defined recursively as a greatest fixed point over
the negative norms ϕ−6802ae – ϕ−6802d of the law. The fixed-point is needed because, as discussed in Section 2,
ϕ−6802c mentions maysend again. The part below the line formalizes §6803; it states that if principal q enters
into a customer relationship with financial institution p, then p must make certain privacy-related disclosures
to q, as codified in the norm ϕ−6803a. The norm ϕ+

6803d1 is an exception to these required disclosures and is
therefore marked with the opposite polarity +. As illustrations, we show the formulas ϕ−6802c and ϕ−6803a. The
former, §6802, was mentioned as the motivating example for fixed-points in Section 2. Readers may wish to
revisit Section 2 for the legal text of the clause. Formula activerole(p, r) means that p is active in the role
r; belongstorole(p, r) means that p is affiliated with role r but may not be acting in it in the current state;
and t ∈T npi means that attribute t would generally not be public information, e.g, social-security number.

ϕ−6802c , ∀p′,m′′. ¬activerole(p1, affiliate(p′)) ∧
(¬activerole(p2, affiliate(p′)) ∧
¬activerole(p2, affiliate(p1))) ∧

(t ∈T npi) ∧
Q(hlsend(p′, p1,m

′′) ∧
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contains(m′′, q, t) ∧
activerole(p′, institution) ∧
¬activerole(p1, affiliate(p′)) ∧
belongstorole(q, consumer(p′))) ⊃
Qmaysend(p′, p2,m

′′)

In conjunction with the overall formula for GLBA, this norm means that principal p1 has permission to
send message m containing attribute t about q (from which some npi or nonpublic protected information
about q can be inferred) to p2 only if for every message m′′ containing (q, t) that p2 received from some
non-affiliate p′ in the past, it is also the case that p′ had permission to send m′′ to p2 directly. The fact
that p1’s permission to send is dependent on p′s permission to send is represented through the greatest-fixed
point which defines the predicate maysend in the top-level formula.

The second norm we illustrate, §6803a, highlights the use of clock time. Its legal description and formal-
ization are:

At the time of establishing a customer relationship with a consumer and not less than annually
during the continuation of such relationship, a financial institution shall provide a clear and
conspicuous disclosure to such consumer [...], of such financial institution’s policies and practices
with respect to [disclosing nonpublic personal information].

ϕ−6803a , (∃m′′. hlsend(p1, q,m
′′) ∧

is-annual-notice(m′′, p1, q)) ∧
((↓x.1(↓y. (y ≤ x+ 365) ∧

((∃m′′. hlsend(p1, q,m
′′) ∧

is-annual-notice(m′′, p1, q)) ∨
endrole(q, customer(p1)))))W

endrole(q, customer(p1)))

Together with the overall specification of GLBA, this norm requires that a financial firm p send an annual
notice of its privacy policies (represented by m′′) to a customer when the customer establishes a relationship
with p and subsequently every year unless the relationship ends. Real time, expressed through the sequence
of operators ↓x.1(↓y. (y ≤ x + 365) ∧ . . .) ensures that, for every state x, there exists a state y occurring
no more than 365 days later in which the annual notice is sent.

The Health Insurance Portability and Accountability Act (HIPAA) For HIPAA, we formalize
§164.502, §164.506, §164.508, §164.510, §164.512, §164.514, and §164.524 of the CFR. §164.502–§164.514
define conditions when a covered entity, which is the HIPAA abstraction for an organization or individual
that handles private health information, may disclose such information to other principals. In general,
disclosures are allowed for purposes of treatment, for adherence to law, and when prior consent has been
obtained from the subject of the information being disclosed. §164.524 specifies rules for responding to
requests for health information by patients. Overall, the top-level formula for HIPAA has the following
form. (Formula req for access(p1, t) is a request by principal p1 that attribute t, e.g, lab results, be retrieved
from p1’s medical record and given to it.)

G (∀p1, p2,m. send(p1, p2,m) ⊃
(∀d, u, q. (m = info(d, u)) ∧ contains(m, q, t) ⊃

∨
i ϕ

+
i ∧

∧
i ϕ
−
i ) ∧

——
(∀t. (m = req for access(p1, t)) ⊃ ϕ−164.524b2i′ ∨ ϕ

−
164.524b2ii′))

ϕ+
i and ϕ−i represent various positive and negative norms to permit disclosures defined in §164.502–

§164.514. Some of these norms are listed in Figure 1. We mention three salient, high-level differences
from the formalization of GLBA. First, the formalization of HIPAA does not require fixed-point operators,
although it does require real time, e.g, in formulas ϕ−164.512c2 and ϕ−164.524b2i in Figure 1. Second, as opposed
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ϕ+
164.502b2i , activerole(p2, provider) ∧ (u ∈U treatment)

ϕ+
164.506c1 , activerole(p1, covered-entity) ∧ (t ∈T phi) ∧

((u ∈U treatment(p1)) ∨ (u ∈U payment(p1)) ∨ (u ∈U healthcare-operations(p1)))

ϕ−164.512c2 , ↓x.∃m′. (Qsend(p1, q,m
′) ∨1(↓y. (y ≤ x+ cprompt) ∧ send(p1, q,m

′))) ∧
is-notice-of-report(m′, p1, p2, (q, t), u)

(cprompt is a time constant that captures the term “promptly” in the law’s text)

ϕ−164.524b2i , ↓x. accessible-on-site(p2, (p1, t)) ⊃1(↓y. (y ≤ x+ 30) ∧ (respond-164.524b2iA(p2, (p1, t)) ∨
respond-164.524b2iB(p2, (p1, t))))

Figure 1: Representative norms from HIPAA formalized in PrivacyLFP

to GLBA, HIPAA includes positive norms as well (e.g, ϕ+
164.502b2i and ϕ+

164.506c1). These are combined
disjunctively in the formalization because only one of these must be satisfied to permit a transmission.
Finally, permission to disclose protected health information under HIPAA is often contingent upon the
purpose (treatment, payment, health care, etc.) of the disclosure, but HIPAA does not regulate that the
recipient of the information use it for exactly the intended purpose. To model this, we assume that the
sender of each message lists its purpose in the message – messages with protected health information have
the form info(d, u) in the top-level formula above where d is the data content and u its purpose – and allow
the norms ϕ+

i and ϕ−i to check the purpose u against those mentioned in HIPAA. Examples of formulas
with such checks are ϕ+

164.502b2i and ϕ+
164.506c1 in Figure 1. The predicate u ∈U u′ means that purpose u is

a specific form of purpose u′, e.g, blood test ∈U treatment .

4 Organizational Process Model

In Section 4.1, we model organizational processes by assigning role-based responsibilities (expressed in Priva-
cyLFP) to agents. Specifically, we show through an example how such a model could mirror an organization’s
natural hierarchy. It is important to ensure that an agent can, in fact, discharge her assigned responsibil-
ities. In Section 4.2, we present examples of responsibilities in PrivacyLFP that can never be discharged,
and then go on to provide a semantic definition of locally feasible responsibilities, which can be discharged.
To aid in designing organizational processes, we also present easily checkable, sound syntactic characteriza-
tions of responsibilities that meet this criterion, associated strategies, and results about composition of such
responsibilities (Theorems 4.2).

4.1 Role-based Responsibility

We model organizational processes by assigning role-based responsibilities (expressed in PrivacyLFP) to
agents. Agents can either be individuals, organizational units, or software systems (reference monitors) that
aid in policy enforcement. The responsibilities of human agents can be arbitrary formulas in PrivacyLFP
while responsibilities for software systems should not contain any predicates whose truth value cannot be
automatically determined by looking at a trace (e.g, the predicate contains(m, q, t) predicate from Section 3).

We show through an example how such a model could mirror an organization’s natural hierarchy. Figure 2
contains an illustration of the processes and a summary of the policies and responsibilities involved in this
example. The high-level policy ϕpol resembles the first half of the top-level formula of GLBA from Section 3,
and contains simplified policies from GLBA. The body of the greatest fixed-point contains the conjunction
of two negative norms. The first norm states that p1 may send to p2 message m, which contains information
t about principal q, only if in the past, p1 has sent q a notice of disclosure. The second negative norm
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is a simplified version of ϕ−6802c, which states that if p1 ever received from another principal p′, a message
containing the same information t about principal q, then p1 may disclose this information to p2 only if p′ is
allowed to send this information directly to p2.

Enforcing ϕpol requires an institution to determine whether another institution may disclose information.
This is not always possible since an institution may not have the ability to observe all actions performed by
other principals. An alternative is to allow an institution p1 to directly send a message and ask the other
institution p2 whether p2 may disclose a certain piece of information. In turn p1 will be responsible for
answering similar queries about itself. Such a process can be modeled by two responsibilities, ϕr1 and ϕr2.
ϕr1 states that p1 can send a message to p2 only if there was a notice of disclosure, and if p1 received the
information from p′, then p′ must have replied to p1’s query and confirmed that p′ can send the message
directly. ϕr2 requires that whenever p1 replies to p2, p1 indeed is allowed to send the information. Notice
that the conditions under which p1 is allowed to reply are the same as those under which p1 may disclose
the information.

The picture at the top of Figure 2 illustrates the internal processes of an institution P . There are three
departments: a disclosure department (D), which is in charge of sending disclosures; a main send and receive
department (SR), which is in charge of sending and receiving messages outside P ; and a query and reply
department (QR), which is in charge of querying another institution whether certain information can be
sent, and answering similar queries from other institutions. SR decides whether a send is allowed or not by
asking the disclosure department if it has sent a disclosure, and if SR wants to forward a message it received
from another institution, it asks QR whether that institution could send that information directly.

Each of these three department is modeled by its responsibilities, which are represented using logical
formulas. We selectively list some of the formulas in the figure. In the next section, we present policy
enforcement techniques using which we can show that D, SR, and QR departments together fulfill P ’s
responsibilities ϕr1 and ϕr2 and that if all institutions fulfill their responsibilities, they collectively comply
with the high-level policy ϕpol.

4.2 Locally Feasible Responsibilities

An agent should be assigned responsibilities that can be discharged using her capabilities. Typically, an
agent may not be able to observe all actions of other agents, or cause another agent to perform an action.
Consider the following responsibilities assigned to agent p:

ϕ1 = ∀c,m.Qsend(c, p,m) ⊃ ∃m′.send(b, c,m′).
ϕ2 = ∀m.1send(b, p,m) ⊃ ∃m′.send(p, c,m′)
ϕ1 requires an agent b to send a message to c if c has sent a message to p. p cannot fulfill this responsibility

because she does not have the power to cause b to send a message. ϕ2 requires p to send a message m′ to
c if in the future, b sends a message to p. p cannot fulfill this responsibility because she cannot predict the
future.

Intuitively, a reasonable responsibility for an agent p has to be local in the sense that it only depends on
histories of the system execution observable by p, and it has to be feasible in the sense that p has a strategy
to fulfill it using only her own actions. We make this intuition precise in the following definitions.

Definitions To talk about p’s plans to fulfill her responsibilities, we define planned traces σ̂, which contain
planned inactions. We write ¬a to denote a function that map states to a set of inactions in that state. A
state in a planned trace is a tuple (κ(s), ρ(s), a(s), ¬a(s), τ(s), ι(s)). If send(p, q,m) ∈ ¬a(s), then in state
s, p does not send q message m. Other elements in σ̂ have the same meaning as those in ordinary traces
(Section 2.2).

A planned trace σ̂ is well formed if a(s) ∩ ¬a(s) = ∅. It is important to include these inactions in σ̂
because they help us detect inconsistencies between an agent’s plans in different states. We define a function
Tr(σ̂) to convert σ̂ to a normal trace. This function simply erases all parts of the trace associated with
inactions.
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D  SR  QR 
p 

Overall privacy policy

ϕpol= G∀p′1, p′2,m′.hlsend(p′1, p
′
2,m

′) ⊃
(νmaysend(p1, p2,m).
∀q, t. contains(m, q, t) ⊃

(Qhlsend(p1, q, f dis(p1, p2, q, t) ∧
∀p′,m′′.hlsend(p′, p1,m

′′) ∧ contains(m′′, q, t) ⊃
Qmaysend(p′, p2,m

′′))(p′1, p
′
2,m

′))

Responsibilities for an institution (note: there is no use of fixed-points)

ϕr1= G ∀p1, p2,m.hlsend(p1, p2,m) ⊃
∀q, t. contains(m, q, t) ⊃
(Qhlsend(p1, q, f dis(p1, p2, q, t)) ∧
∀p′,m′.hlsend(p′, p1,m

′) ∧ contains(m′, q, t) ⊃
Qsend(p′, p1, f reply maysend(p′, p2,m

′)))

ϕr2=G ∀p1, p0, p2,m. send(p1, p0, f reply maysend(p1, p2,m)) ⊃
∀q,t.contains(m, q, t) ⊃
(Qhlsend(p1, q, f dis(p1, p2, q, t)) ∧
∀p′,m′.hlsend(p′, p1,m

′) ∧ contains(m′, q, t) ⊃
Qsend(p′, p1, f reply maysend(p′, p2,m

′)))

Responsibilities for P ’s internal departments

ϕD= G∀p′,m, q, t. send(D,SR, f sent dis(p′, q, t) ⊃
Qhlsend(D, q, f dis(p, p′, q, t))

ϕSR1= G∀p2,m, q, t.hlsend(SR, p2,m) ∧ contains(m, q, t) ⊃
(Qsend(D,SR, f sent dis(p2, q, t)) ∧
∀p′,m′.hlsend(p′, SR,m′) ∧ contains(m′, q, t) ⊃
Qsend(QR,SR, f reply maysendI (p′, p2,m

′)))

ϕSR2= ∀p1,m. send(SR,QR, f maysend(p1,m) ⊃
(Qsend(D,SR, f sent dis(p1, q, t)) ∧
∀p′,m′.hlsend(p′, SR,m′) ∧ contains(m′, q, t) ⊃
Qsend(QR,SR, f reply maysendI (p′, p1,m

′)))

ϕQR1= G∀p1,p2,m. send(QR,SR, f reply maysendI (p1, p2,m)) ⊃
Qsend(p1, QR, f reply maysend(p1, p2,m))

ϕQR2= ∀p1,p2,m. send(QR, p1, f reply maysend(p, p2,m) ⊃
(Qsend(SR,QR, f maysend(p2,m))

Functions such as f dis(p1, p2, q, t) generate a particular kind of message. For instance, f dis(p1, p2, q, t) is
a notice of disclosure to q stating that p1 will disclose to p2 information t.

Figure 2: Example Process
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We say q is the performer of P ~t if q can perform the action represented by predicate P ~t. For example,
p is the performer of send(p, q,m).

We write σ̂ |i to denote the projection of σ̂ up to the ith state. We write σ̂ |i−1= ∅ to mean that the
domain of all functions defining σ̂ does not contain any state that is earlier than state i.

We write σ̂ |AS to denote the trace that is the same as σ̂ except that it only contains actions and inactions
of which an agent in S is a performer. We write σ̂ |VS to denote the trace containing only the parts of σ̂ that
are observable by some agent in S.

We say i is in the domain of σ̂ if i is in the domain of all the functions that define σ̂.
To ensure composition, we assume that all agents agree on the smallest increment of time interval ı, and

we only consider traces where for each state i and i + 1, τ(i + 1) = τ(i) + ı. A starting time t0 for state 0
uniquely determines the time points for the rest of the states. Given τ , we write start(τ) to denote the time
point at state 0. We say τ is compatible with τ ′ if start(τ) = start(τ ′).

We write σ̂1 ] σ̂2 to denote the merge of σ̂1 and σ̂2. Intuitively, it is obtained by taking the union of
knowledge map, role sets, action sets and predicates of states that have the same timestamp. Let us use
subscripts 1 to index functions defining σ̂1 and 2 to index those defining σ̂2. The merge operation is well
defined only if for all states i that are in the domain of both σ̂1 and σ̂2, i.e, for i that satisfy:

• τ1(i) = τ2(i)

• ρA1 (i) = ρA2 (i)

• a1(i) ∩ ¬a2(i) = ∅, a2(i) ∩ ¬a1(i) = ∅

Def. ϕr is local to a set of agents Sa if for all traces σ1 and σ2, σ1 |VSa= σ2 |VSa implies σ1 � ϕr iff σ2 � ϕr.

ϕr is local to a set of agents Sa if it does not depend on states that are not observable by any agent in
Sa.

The responsibilities we focus on have the form G ϕr. A set of responsibilities Φ is feasible for a group of
agents Sa if agents in Sa collectively have a strategy to cause each ϕr in Φ to be true at every state i, and
future actions will not affect the validity of ϕr at i.
Def. A set of responsibilities Φ is feasible for a set of agents Sa if for all j the following holds

∀σ̂o, H(σ̂0, 0, Sa, t0) ⊃
∃σ̂Sa0 ,F (σ̂Sa0 , 0, Sa, t0) ∧ σ̂0 ] σ̂Sa0 is well-defined

∀σ̂′ such that σ̂′ |0= ∅ ∧ σ̂′ ] σ̂0 ] σ̂Sa0 is well-defined ⊃
∀ G ϕi ∈ Φ,Tr(σ̂′ ] σ̂0 ] σ̂Sa0 ), 0 � ϕi ∧
∀σ̂1, H(σ̂1, 1, Sa, t0) ⊃
∃σ̂Sa1 ,F (σ̂Sa1 , 1, Sa, t0) ∧ σ̂0 ] σ̂Sa0 ] σ̂1 ] σ̂Sa1 is well-defined
∀σ̂′ such that σ̂′ |1= ∅ ∧ σ̂′ ] σ̂0 ] σ̂Sa0 ] σ̂1 ] σ̂Sa1 is well-defined ⊃
∀ G ϕi ∈ Φ,Tr(σ̂′ ] σ̂0 ] σ̂Sa0 ] σ̂1 ] σ̂Sa1 ), 1 � ϕi ∧

· · ·
∀σ̂j , H(σ̂j , j, Sa, t0) ⊃
∃σ̂Saj ,F (σ̂Saj , j, Sa, t0) ∧⊎j

k=0 σ̂k ] σ̂Sak is well-defined

∀σ̂′ such that σ̂′ |j= ∅ ∧ σ̂′ ]
⊎j
k=0 σ̂k ] σ̂Sak is well-defined ⊃

∀ G ϕi ∈ Φ,Tr(σ̂′ ]
⊎j
k=0 σ̂k ] σ̂Sak ), j � ϕi

where H(σ̂, k, Sa, t0) is true when the domain of σ̂ contains only state k, σ̂ does not contain any actions from
any agent in Sa and t0 is the time point for state 0 according to τ . F (σ̂, k, Sa, t0) is true when σ̂ contains
only actions from agents in Sa, and all the planned actions are for states no earlier than k, and t0 is the
time point for state 0 according to τ . More formal definitions can be found in Figure 6.

In the above definition, σ̂i are actions by agents other than those in Sa at state i, and σ̂Sai are actions
by agents in Sa. The alternating ∀ and ∃ quantification ensures that given any actions by agents not in Sa,
agents in Sa have a way to cause ϕi to be true in that state, and any future extension of the trace will not
affect the validity of ϕi at the current state. The condition that requires

⊎j
k=0 σ̂k ] σ̂Sak to be well-defined
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ensures that an agent’s current decisions should not conflict with any of her past decisions. Finally, given
any σ̂′ that only concerns states later than j, the merge of σ̂′ and all the planned traces by agents in Sa
(σ̂Sak ) and all the planned traces by agents not in Sa (σ̂k) satisfies all the responsibilities in Φ at state j. The
use of σ̂′ is to ensure that once agents in Sa have decided on a strategy at state j, all the responsibilities in
Φ should still hold at state j no matter what happens in the future.

Feasibility Theorems In the case studies of HIPAA and GLBA, all the policies are or can be rewritten
into two general forms. One expresses conditions on performing an action (e.g, §6802 of GLBA); the other
expresses future obligation (e.g, §6803 of GLBA).

Based on this observation, we investigate the local feasibility conditions for responsibilities that have the
following syntactic structure.

(r1) G (∀~x.ϕ−c (p) ⊃ ϕpast)
(r2) G (∀~x.ϕpast ⊃ ϕ+

f (p))

(r3) G (∀~x.ϕpast ⊃ ϕ−f (p))

We write ϕpast to denote formulas that do not contain future operators. ϕpast captures conditions on
the history of the system execution. Responsibilities in (r1) require an agent to not perform actions in the
current state unless ϕpast holds. Responsibilities in (r2) require an agent to fulfill obligations if ϕpast holds.
Responsibilities in (r3) require an agent to not perform future actions if ϕpast holds. We define the syntactic
constructs used in (r1) - (r3) below.

Conditions Kp(~x) : : = contains(x, q, t) | · · ·
| Kp(~x) ∧ Kp(~x) | Kp(~x) ∨ Kp(~x) | ∃y.Kp(~x, y)

Actions Ap : : = send(p, q,m) | · · ·
Current Neg Form ϕ−c (p) : : = ⊥ | Ap | ϕ−c (p) ∧ ϕ | ϕ−c (p) ∨ ϕ−c (p) | ∃x.ϕ−c (p)
Future Pos Form ϕ+

f (p) : : = > | Ap | ϕ+
f (p) ∧ ϕ+

f (p) | ϕ+
f (p) ∨ ϕ

| ∃x.Kp(x) ∧ ϕ+
f (p) | ↓x.ϕ+

f (p)

| 1ϕ+
f (p) | �ϕ+

f (p) | ϕ+
f (p) U ϕ+

f (p)

| 1↓x. c(x) ∧ ϕ+
f (p) | ϕ+

f (p) U (↓x. c(x) ∧ ϕ+
f (p))

Future Neg Form ϕ−f (p) : : = > | ¬Ap | ϕ−f (p) ∧ ϕ−f (p) | ϕ−f (p) ∨ ϕ
| ∀x.ϕ−f (p) | ↓x.ϕ−f (p)

| 1ϕ−f (p) | �ϕ−f (p) | ϕ−f (p) U ϕ−f (p)

| 1↓x. c(x) ∧ ϕ−f (p) | ϕ−f (p) U (↓x. c(x) ∧ ϕ−f (p))

ϕ−c (p) includes formulas that p can cause to be false by planning inactions in the current state. The base
case for ϕ−c (p) is Ap, which denotes an action of which p is a performer (e.g, send(p, b,m)). Agent p can
cause send(p, b,m) to be false in the current state by not sending b message m. ϕ+

f (p) is similar to ϕ−c (p)
and it includes all future operators. These are formulas that p can cause to be true by planning actions in
future states (e.g,1send(p, b,m)). Finally, ϕ−f (p) also contains future operators, but the base case is ¬Ap.
These are formulas that a can cause to be true by planning inactions in future states (e.g,1¬send(p, b,m)).

In the definition of ϕ+
f , existentially quantified variables are guarded by predicates Kp(~x). Kp(~x) are

formulas that p can provide a substitution δ for ~x such that δ(Kp(~x)) is true and supported by p’s knowledge,
e.g, contains(m, · · · ).

Finally, variables bound by the freeze operator are guarded by an inequality constraint on the time points
x (c(x)). We use them to rule out nonsensical formula such as ↓x.1↓y.(y < x) ∧ ϕ (y should only refer to
time points no earlier than x because y shows up under a future operator).

We decide not to include all forms of quantification in ϕ−c , ϕ+
f and ϕ−f . For (r1), it makes little sense

to have a universal quantification to the left of the implication, which means that if all instances of some
action occur on the trace, then some condition has to hold. Our case studies also supports this decision.
The universal quantifiers in ϕ+

f (p), can be moved to the top-level in (r2). Finally, ϕ−f talks about inactions,
so it doesn’t make sense to have an obligation that requires an agent to selectively not perform an action.
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We build up our theorems about feasibility from a single responsibility to composition of responsibilities
for a single agent to the composition of responsibilities for a group of agents. The proofs are constructive:
they provide concrete plans for agents to discharge their responsibilities. (Details of proofs and auxiliary
judgments used in theorems are in Appendix D).

Theorem 4.1 (Feasibility of one responsibility).
(r1) G (∀~x.ϕ−c (p) ⊃ ϕpast) is feasible for agent p
(r2) G (∀~x.ϕpast ⊃ ϕ+

f (p)) is feasible for agent p

if ` ϕpast fin, ·; · ` ϕ+
f (p) sat and Af (ϕ+

f (p)) ` ϕpast
(r3) G (∀~x.ϕpast ⊃ ϕ−f (p)) is feasible for p if ·; · ` ϕ+

f (p) sat

(r1) is trivially feasible by planning inactions in all states; (r2) is feasible by planning only actions
required by ϕ+

f when ϕpast is true; and (r3) is feasible by planning inactions required by ϕ−f in all states.
The conditions ϕpast, only depend on the history of the trace, so at each state p can decide whether or not
these conditions hold; thus, no future prediction is required.

There are several subtle conditions in (r2). Judgment ` ϕpast fin ensures that for any given trace, there
exists only finite number of substitutions δ for fv(ϕpast) such that δϕpast holds. This condition allows p to
plan only a finite number of actions in each state. Judgment Af (ϕ+

f (p)) ` ϕpast holds when actions required

by ϕ+
f (p) do not overlap with actions that ϕpast depends on. We need to make sure that the actions p has

planned will not cause more ϕpast to be true; in which case, it is not obvious whether p only needs to perform
a finite number of actions. For instance ϕr = ∀m. send(p, q,m) ⊃ send(p, q, (m,m)) is not feasible for p
because p needs to perform an infinite number of send actions although it fits the syntactic form presented in
(r2). Finally, the judgment Σ; Γ ` ϕ sat checks whether all the time points introduced by the freeze operators
in ϕ+

f (p) are sensible. For instance, nonsensical formulas such as ↓x.1↓y.(y < x) ∧ ϕ are ruled out. Note
that we actually cannot decide purely syntactically if c(x) is satisfiable or not; rules for Σ; Γ ` ϕ sat call a
theorem prover to check satisfiability of conditions.

In order to compose plans of different agents, we need to make sure that an agent p’s plan is not affected
by changes in the current state caused by another agent b. Otherwise, the agents would not be able to
achieve a stable state without computing a global fixed point across the entire group or imposing a global
ordering of agents’ actions. We define a syntactic check on a past formula, written p ` ϕ StrictPast, to ensure
that all the current actions that may cause ϕ to be true are completely controlled by p. Theorem 4.2 states
that a group of agents has a strategy to fulfill a set of responsibilities if each of them can fulfill their own
responsibilities, and all the past formulas are not be affected by current actions by other agents.

Theorem 4.2 (Feasibility composition for multi-agents). Given a group of agents Sa, let Φp be the set of
responsibilities for p ∈ Sa. Assume that Φp is feasible for p. If for each ϕi ∈ Φp, one of the following
conditions holds, then the union of Φp for all p ∈ Sa is feasible for Sa.

1. ϕi = G∀~x.ϕ−c (p) ⊃ ϕpast, and p ` ϕpast StrictPast
2. ϕi = G∀~x.ϕpast ⊃ ϕ+

f (p), and p ` ϕpast StrictPast

3. ϕi = G∀~x.ϕpast ⊃ ϕ−f (p), and p ` ϕpast StrictPast

So far, we have assumed that an agent can observe all actions in the history, but this is not true in
general. An agent a may only view certain part of the state.
Def. We say that ϕ is visible to an agent a if all the atomic predicates in ϕ describe states visible to a.

Theorem 4.3. If ϕ is visible to Sa then ϕ is local to Sa.

Theorem 4.3 and Theorem 4.2 together give us conditions for locally feasible responsibilities for a set of
agents.

Discussion We have made an assumption that the existence of states is visible to all agents, even though
certain actions in those states are not. In other words, all agents are synchronized in lock-step. This
assumption simplifies the definition of the merge of two traces since we do not need to consider inserting a
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state from one trace between two adjacent states on the other. A more general model would allow agents
to be completely asynchronous, and the merge of two traces to be defined based on the total ordering of
time points. The feasibility theorems given here allow for more responsibilities to be feasible than those that
would be allowed in the more general case. For instance, Qϕ ⊃ send(p, q,m) would not be locally feasible
to p in the general case, because p has no way of satisfying this responsibility in states that are not visible
to p. We plan to investigate the classification of locally feasible responsibilities in the asynchronous case in
future work.

5 Privacy Policy Enforcement

We present two logic-based methods for enforcing privacy policies. Our first method answers the question:
Does a given organizational process respect a given privacy policy? This method is based on a sound proof
system for LFP and is described in Section 5.1. Although the proof system is obtained by adapting previous
proof systems for an intuitionistic logic with fixed-points, µLJ [8, 17], to our classical logic LFP, we believe
that its soundness with respect to trace semantics is a new result. Our second enforcement method audits
logs of organizational activity for violations of principals’ assigned responsibilities. It is based in a novel
tableau-based model checking procedure for LFP that we present and prove sound in Section 5.2. Although
we develop both methods for LFP, due to the embedding in Section 2.3, both methods apply to PrivacyLFP,
as illustrated by examples here.

5.1 Auditing Organizational Processes

We present a proof-theoretic method to check whether a given organizational process respects a given privacy
policy. We assume that the organizational process is specified in terms of responsibilities ϕr1, . . . , ϕrn of the
organization’s principals. The privacy policy ϕp is also assumed to be specified in LFP. It may, for example,
be the formalization of a privacy law such as GLBA or HIPAA from Section 3. Technically, the problem is

that of establishing the entailment (ϕctx ∧
n∧
i=1

ϕri) ⊃ ϕp, where ϕctx relates privacy relevant actions in the

organizational process to their counterparts in the policy (examples of such formulas appear in the example
at the end of this section). We propose the use of a proof system for LFP to check such entailments. We
show that the proof system is sound with respect to the semantics of LFP, which, together with the above
entailment, ensures that if principals fulfill their respective responsibilities then the privacy policy is not
violated.

Our proof system, presented in the sequence calculus style of Gentzen [22], establishes hypothetical
judgments or sequents Σ; Γ ` ∆, where Γ and ∆ are sets of LFP formulae and Σ is a set of variables that

occur free in them. The intuitive meaning of Σ; Γ ` ∆ is that for all substitutions θ for variables in Σ,
∧

Γθ

entails
∨

Γθ. The rules of inference are shown in Figure 3. Rules for connectives of first-order logic are

standard. The interesting rules are those for fixed-point operators, all of which are adapted from similar
calculi for the intuitionistic fixed-point logic µLJ by Baelde [8] and Clairambault [17]. In the rules µL and
νR, ψ is an arbitrary formula. The rules µR and νL simply unfold the fixed-points. The rules µL and νR
encode induction and co-induction principles for the least and the greatest fixed point operators respectively.
We refer the reader to prior work [8, 17] for an explanation of induction and co-induction, but illustrate the
use of the rules for the greatest-fixed point operator in proving compliance of organizational processes with
privacy policies through an example.

Theorem 5.1 (Soundness of the sequent calculus). If Σ; Γ ` ∆ then for all traces σ and for all substitutions

θ with dom(θ) = Σ, (θ;σ |=
∧

Γ) implies (θ;σ |=
∨

∆).

Proof. See Appendix B, Lemma B.1.
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Σ; Γ, ϕ ` ϕ,∆
init

Σ; Γ ` >,∆
>R

Σ; Γ,⊥ ` ∆
⊥L

Σ; Γ ` ϕ1,∆ Σ; Γ ` ϕ2,∆

Σ; Γ ` ϕ1 ∧ ϕ2,∆
∧R

Σ; Γ, ϕ1, ϕ2 ` ∆

Σ; Γ, ϕ1 ∧ ϕ2 ` ∆
∧L

Σ; Γ ` ϕi,∆
Σ; Γ ` ϕ1 ∨ ϕ2,∆

∨R
Σ; Γ, ϕ1 ` ∆ Σ; Γ, ϕ2 ` ∆

Σ; Γ, ϕ1 ∨ ϕ2 ` ∆
∨L

Σ; Γ, ϕ ` ∆

Σ; Γ ` ¬ϕ,∆
¬R

Σ; Γ ` ϕ,∆
Σ; Γ,¬ϕ ` ∆

¬L
Σ, a; Γ ` ϕ{a/x},∆

Σ; Γ ` ∀x.ϕ,∆
∀R

Σ; Γ, ϕ{t/x} ` ∆

Σ; Γ, ∀x.ϕ ` ∆
∀L

Σ; Γ ` ϕ{t/x},∆
Σ; Γ ` ∃x.ϕ,∆

∃R

Σ, a; Γ, ϕ{a/x} ` ∆

Σ; Γ, ∃x.ϕ ` ∆
∃L

Σ; Γ ` ϕ{µX, ~x.ϕ/X}{~t/~x},∆
Σ; Γ ` (µX(~x).ϕ)(~t),∆

µR

Σ; Γ, ψ{~t/~x} ` ∆ Σ, ~y; Γ, ϕ{λ~x.ψ/X}{~y/~x} ` ψ{~y/~x}
Σ; Γ, (µX(~x).ϕ)(~t) ` ∆

µL

Σ; Γ ` ψ{~t/~x},∆ Σ, ~y; Γ, ψ{~y/~x} ` ϕ{λ~x.ψ/X}{~y/~x}
Σ; Γ ` (νX(~x).ϕ)(~t),∆

νR
Σ; Γ, ϕ{νX, ~x.ϕ/X}{~t/~x} ` ∆

Σ; Γ, (νX(~x).ϕ)(~t) ` ∆
νL

Figure 3: Sequent calculus for LFP

Continuing the example from Section 4.1, we would like to audit the processes shown in Figure 2. First,
we need to formalize connections between actions of internal processes with their counterparts in higher-
level responsibilities – we need to establish that whenever P sends a disclosure, it comes from the disclosure
department D and vice versa. This is encoded in the formulas ϕctx1 and ϕctx2 below. (Similar requirements
for the other two departments as well, but this suffices for our illustration.)

ϕctx1= G ∀q, t, p′.hlsend(p, q, f dis(p, p′, q, t)) ⊃
hlsend(D, q, f dis(p, p′, q, t))

ϕctx2= G ∀q, t, p′.hlsend(D, q, f dis(p, p′, q, t)) ⊃
hlsend(p, q, f dis(p, p′, q, t))

Auditing the processes involves discharging the following two proof obligations, where ϕPri (i = 1, 2) is the
formula ϕri from Figure 2 without the outermost quantification of p1, and with P substituted for p1: (1)
ϕr1, ϕr2 ` ϕpol, and (2)

∧
ϕci, ϕD,

∧
ϕSRi,

∧
ϕQRi ` ϕpr1 ∧ ϕpr2. We illustrate our method by explaining

briefly a proof of (1). The proof relies on the co-induction principle for greatest-fixed points codified in the
rule νR. A skeleton of the proof is shown in Figure 4. To apply the rule νR, we need an appropriate predicate
ψ that validates the premises of the rule. Here, an appropriate ψ is the inner body of ϕr1 and ϕr2.

5.2 Auditing Responsibilities

Our second enforcement method is an auditing technique which checks logs of organizational activity for
violations of principals’ assigned responsibilities. Formally, the problem is one of ensuring that a trace σ
(concretely represented as a log of past activity of principals) satisfies each responsibility, i.e, •;σ |= ϕri for
each responsibility ϕri.

1 Technically, this is a model checking problem, so, in this section, we develop a local
model checking method for LFP and prove it sound.2 To the best of our knowledge, this is the first local
model checking procedure for LFP. Our method builds on prior work on local model checking for the modal
µ-calculus [24, 30, 34], which is the propositional fragment of LFP. The modal µ-calculus is interpreted over

1• is our notation for an empty set or an empty substitution. Throughout this section, we work only in formulas without
free first-order variables.

2A model checking method is called “local” if it does not explicitly compute the entire interpretation of each recursively
defined predicate.
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ψ(p1, p2,m) = ∀q, t. contains(m, q, t) ⊃
(Qhlsend(p1, q, f dis(p1, p2, q, t)) ∧ ∀p′,m′.hlsend(p′, p1,m

′) ∧
contains(m′, q, t) ⊃Qsend(p′, p1, f reply maysend(p′, p2,m

′)))

(ϕb is the body of maysend)

ψ{p′, p2,m′′/p1, p2,m} ` ψ{p′, p2,m′′/p1, p2,m}
· · ·

ϕr2, send(p′, p1, f reply maysend(p′, p2,m
′′))

` ψ{p′, p2,m′′/p1, p2,m}
· · ·

· · · ψ ` ∀q, t. contains(m, q, t) ⊃
(Qhlsend(p1, q, f dis(p1, p2, q, t) ∧

∀p′,m′′.hlsend(p′, p1,m
′′)

∧ contains(m′′, q, t) ⊃
Qψ{p′, p2,m′′/p1, p2,m}))

ϕr2, ψ{p′1, p′2,m′/p1, p2,m}
` (νmaysend(p1, p2,m).ϕb)(p

′
1, p
′
2,m

′)

· · · {∀R, ∀L,∨ R,¬R,∨ L,¬L}
ϕr1, ϕr2 ` ϕpol

νR

init

Figure 4: Example Proof Tree

Kripke structures and the objective of model checking for it is to find for each recursively defined predicate,
the set of worlds of the Kripke structure in which the predicate is true. The key insight in generalizing
model checking from the modal µ-calculus to LFP is to view each tuple of terms as a world and to relate
satisfaction relations in the modal µ-calculus and LFP by saying that the world ~t satisfies the LFP predicate
P if and only if P (~t) holds. Given this insight, our model checking method is an unsurprising generalization
of Winskel’s method [34] for model-checking the modal µ-calculus.

We formalize the model-checking procedure as semantic tableaus. We work only in NNF formulas (we
showed in Section 2.1 that every LFP formula can be translated to NNF through DeMorgan’s laws). To
deal with greatest fixed-points in tableaus, we rely on equations, which have the form X ⇒ λ~x. ϕ (ϕ may
mention both X and ~x). Given this equation, the interpretation of X is the largest relation that equates the
two sides of the definition X(~x) , ϕ semantically. We call X the defined variable of the equation and ~x the
equation’s parameters and ϕ its body. A list of equations E is a list E1, . . . , En with the constraints that
no predicate variable be defined twice in the list, and for each i, the body of Ei may not mention predicate
variables defined in Ei+1, . . . , En.

Our semantic tableaus work with formulas without first-order variables and infer judgments of the form
σ; E ; ∆ ` ϕ, where ∆ is a set of pairs of the form X : S, which intuitively means that X ~t holds for each
~t ∈ S and E is a list of equations that defines all predicate variables free in ∆ and ϕ. (S is a finite set of
tuples.) σ is an interpretation of all predicate symbols P in E , ∆, and ϕ given to us as a trace against which
we are auditing. Roughly, the meaning of the entire judgment is that ϕ is true in the interpretation σ for
predicate symbols and the largest possible interpretation for each equation that also includes X ~t for every
X : S ∈ ∆ and ~t ∈ S.

To check that •;σ |= ϕ, the tableau procedure starts with the judgment σ; •; • ` ϕ and tries to construct a
derivation by applying the rules of Figure 5 backwards. A branch closes or successfully ends when it matches
a rule whose premises are satisfiable and do not contain the symbol `. Most of the rules of Figure 5 are
straightforward and correspond to the semantics of LFP. The interesting rules are those for fixed points. The
rule for (µX(~x).ϕ)(~t) unrolls the fixed-point. The soundness of this rule is a consequence of the semantics of
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[[~t ]]• ∈ Iσ(P )

σ; E ; ∆ ` P ~t
INIT

[[~t ]]• 6∈ Iσ(P )

σ; E ; ∆ ` ¬(P ~t)
¬

σ; E ; ∆ ` >
>

σ; E ; ∆ ` ϕ1 σ; E ; ∆ ` ϕ2

σ; E ; ∆ ` ϕ1 ∧ ϕ2

∧

σ; E ; ∆ ` ϕ1

σ; E ; ∆ ` ϕ1 ∨ ϕ2

∨1
σ; E ; ∆ ` ϕ2

σ; E ; ∆ ` ϕ1 ∨ ϕ2

∨2
all d ∈ D. (σ; E ; ∆ ` ϕ{d/x})

σ; E ; ∆ ` ∀x.ϕ
∀

d ∈ D σ; E ; ∆ ` ϕ{d/x}
σ; E ; ∆ ` ∃x.ϕ

∃
σ; E ; ∆ ` ϕ{~t/~x}{(µX, ~x. ϕ)/X}

σ; E ; ∆ ` (µX(~x).ϕ)(~t)
µ

σ; E , X ⇒ λ~x.ϕ; ∆, X : {} ` X ~t (X fresh)

σ; E ; ∆ ` (νX(~x).ϕ)(~t)
ν

[[~t ]]• ∈ [[S ]]•

σ; E ; ∆, X : S ` X ~t
X1

[[~t ]]• 6∈ [[S ]]• (X ⇒ λ~x.ϕ) ∈ E σ; E ; ∆, X : S ∪ {~t} ` ϕ{~t/~x}
σ; E ; ∆, X : S ` X ~t

X2

Figure 5: Semantic tableau for model-checking LFP. The rules are applied backwards.

LFP. The rule for (νX(~x).ϕ)(~t) creates a fresh predicate name X for the predicate defined by the fixed-point
and stores its definition as the equation X ⇒ λ~x.ϕ in E . The equation is looked up in the rule X2 for
checking X ~t. In the third premise of that rule, the fact that X ~t has been encountered on the branch is
recorded in ∆. This ensures that if X ~t is encountered again, then the branch closes (rule X1). Winskel [34]
proved that admitting cycles for greatest-fixed points in this manner is sound in the propositional case. Our
soundness theorem (Theorem 5.2) extends that result to the first-order case.

Theorem 5.2 (Soundness of tableau). If σ; •; • ` ϕ has a successful tableau, then •;σ |= ϕ.

Proof. See Appendix C, Theorem C.5.

An important practical consideration in any model checking procedure for first-order logic is treatment
of quantifiers. The rules for quantifiers in Figure 5 require guessing a correct substitution for an existentially
bound variable and iterating over all elements of the domain of interpretation, D, for a universally bound
variable, both of which may be impossible if D is infinite. In practice, the problem can be addressed by
assuming that all quantifiers are guarded by formulas that restrict the relevant substitutions for the bound
variables to finite sets, as in guarded first-order logic [5].

We illustrate the use of model-checking in auditing traces for violations of privacy-related responsibilities
from the Example of Figure 2, which does not include fixed-points. Readers should bear in mind that even
though this example does not use fixed-points, their treatment, especially that of greatest fixed-points, is
the technically challenging part of the method.

Suppose that E and Q are principals (whose details are irrelevant to this example) and M is a message
which contains some information about attribute T of Q. Consider a trace σ with just two states σ = s0s1,
and each of the two states containing exactly one message transmission as follows:

s0 D → Q : f dis(P,E,Q, T )
s1 D → SR : f sent dis(E,Q, T )

In state s0 the disclosure department D informs principal Q that its information about attribute T may
be sent to E by P . In the next state s1, D informs SR about this disclosure. We are interested in check-
ing whether D has violated its responsibility ϕD from Figure 2. In this example it hasn’t. To check that
this is the case, we must construct a tableau for σ; •; • `G ∀p′,m, q, t. (send(D,SR, f sent dis(p′, q, t)) ⊃
Qhlsend(D, q, f dis(P, p′, q, t))). Expanding the syntax into LFP through the embedding of Section 2.3, we
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must check that σ; •; • ` ∀s, p′,m, q, t. (¬send(s,D, SR, f sent dis(p′, q, t))) ∨ ∃s′. ((s′ ≤st s) ∧
hlsend(s′, D, q, f dis(P, p′, q, t))). Using rule ∀ from Figure 5, we must check for every s, p′, m, q, t that
σ; •; • ` (¬send(s,D, SR, f sent dis(p′, q, t))) ∨ ∃s′. ((s′ ≤st s) ∧ hlsend(s′, P, q, f dis(P, p′, q, t))). For
(s, p′,m, q, t) 6= (s1, E,M,Q, T ), the branch ¬send(s,D, SR, f sent dis(p′, q, t)) succeeds by ∨1 and INIT.
Hence, it only remains to check that σ; •; • ` ∃s′. ((s′ ≤st s1) ∧ hlsend(s′, D,Q, f dis(P,E,Q, T ))). Choosing
s′ = s0 in rule ∃, this reduces to σ; •; • ` (s0 ≤st s1) ∧ hlsend(s0, D,Q, f dis(P,E,Q, T )). The conjunct
s0 ≤st s1 succeeds by definition of the trace, so we must show only that σ; •; • ` hlsend(s0, D,Q, f dis(P,E,Q, T )),
which succeeds immediately by rule INIT.

6 Related Work

The core logic used for the technical work in this paper is the least-fixed point logic (LFP) [13, 28]. However,
the proof-theory for fixed-points presented in Section 5.1 is based on an unrelated source – the intuitionistic
logic µLJ – that has been used in the past as a logical framework for specifying and reasoning about formal
systems [8, 17]. Besides adapting that work to our classical setting, we also prove the proof-system sound with
respect to trace semantics. Our model-checking method (Section 5.2) is a first-order extension of prior work
on model-checking the propositional modal µ-calculus [24, 30, 34], most notably the work of Winskel [34].

Privacy languages such as EPAL [6, 7] and XACML [4] are formulated as access control frameworks.
EPAL and XACML do not possess first-class temporal modalities, but have a much weaker uninterpreted
obligation symbol for representing future requirements. Our logic has its rich temporal and obligation
constructs and is, therefore, more expressive than EPAL and XACML. P3P [1, 15, 29] is a privacy language
targeted exclusively to web sites, but due to its domain-specific design it is unsuited for expressing privacy
policies based on laws like HIPAA and GLBA. RBAC languages focus on access control [18, 23, 25] but lack
a notion of data attribute as well as temporal modalities needed to express privacy policies.

Choosing deontic logic, rather than temporal logic, as a foundation, Dinesh et al. have developed a
logic for reasoning about conditions and exceptions in privacy laws [21]. The approach of Dinesh et al. is
advantageous in that it simplifies the task of formalizing the law clause by clause: there is no need to modify
previously formalized clauses if exceptions appear in later paragraphs. Further investigation is needed to
determine whether their ideas can be adapted to our logic.

7 Conclusion

We presented the logic PrivacyLFP and used it to express role-based responsibilities of agents in organi-
zational processes. We presented a semantic locality criterion to characterize “reasonable” responsibilities
that agents (or groups of agents) have a strategy to discharge, and easily checkable, sound syntactic charac-
terizations of responsibilities that meet this criterion. We develop policy enforcement techniques based on
a sound proof system and an auditing procedure for PrivacyLFP based on a tableau-based model checking
algorithm we develop. We illustrated these enforcement techniques using a representative example of an
organizational process. In future work, we plan to apply these techniques to larger organizational processes,
formalize other privacy regulations, and develop tool support for policy enforcement.
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A Basic Theory of LFP

We develop some preliminary theory of LFP’s semantics. Our proofs of soundness of proof-theory and model
checking (Section 5) rely on this theory.

Lemma A.1 (Term substitution). The following hold:

1. θ, θ′; I |= ϕ if and only if θ′; I |= ϕθ

2. FX,~xI,(θ,θ′)(ϕ) = FX,~xI,θ′ (ϕθ)

Proof. First observe that since [[ t ]]θ,θ
′

must be homomorphic in the structure of terms, [[ tθ ]]θ
′

= [[ t ]]θ,θ
′
. The

proof of both statements then follows by lexicographic induction, first on ϕ and then on (1) < (2).

Lemma A.2 (Variable substitution). Let ϕ be a formula, possibly containing the distinguished variables ~x,
and let X be a predicate variable of arity |~x|. Then,

1. θ; I |= ψ{(λ~x.ϕ)/X} if and only if θ; I, X 7→ {~d | θ, ~x 7→ ~d; I |= ϕ} |= ψ.

2. FY,~yI,θ (ψ{(λ~x.ϕ)/X}) = FY,~y
(I,X 7→{~d | θ,~x7→~d;I|=ϕ}),θ′

(ψ).

Proof. The proof of both statements follows by lexicographic induction, first on ψ and then on (1) < (2).

A.1 Fixed-point Unrolling

We prove some results about unrolling of fixed-points.

Lemma A.3 (Unrolling lemma). The following hold:

1. θ; I |= (µX(~x). ϕ) ~t if and only if θ, ~x 7→ [[~t ]]θ; I |= ϕ{(µX(~x). ϕ)/X}

2. θ; I |= (νX(~x). ϕ) ~t if and only if θ, ~x 7→ [[~t ]]θ; I |= ϕ{(νX(~x). ϕ)/X}

Proof. We prove (1) below. The proof of (2) is identical except that µ is replaced by ν everywhere (this works
because the proof below relies only on µX(~x). ϕ being a fixed-point, not on it being the least fixed-point).

Proof of (1). We have:

θ; I |= (µX(~x). ϕ) ~t

↔ [[~t ]]θ ∈ µFX,~xI,θ (ϕ) (Defn.)

↔ [[~t ]]θ ∈ FX,~xI,θ (ϕ)(µFX,~xI,θ (ϕ)) (µFX,~xI,θ (ϕ) is a fixed-point of FX,~xI,θ (ϕ))

↔ [[~t ]]θ ∈ {~d | θ, ~x 7→ ~d; I, X 7→ µFX,~xI,θ (ϕ) |= ϕ} (Defn.)

↔ θ, ~x 7→ [[~t ]]θ; I, X 7→ µFX,~xI,θ (ϕ) |= ϕ (Set-theory)

↔ θ, ~x 7→ [[~t ]]θ; I, X 7→ {[[~t ]]θ | θ; I |= (µX(~x). ϕ) ~t} |= ϕ (Defn. of θ; I |= (µX(~x). ϕ) ~t)

↔ θ, ~x 7→ [[~t ]]θ; I, X 7→ {[[~t ]]θ | θ, ~x 7→ [[~t ]]θ; I |= (µX(~x). ϕ) ~x} |= ϕ (Lemma A.1)

↔ θ, ~x 7→ [[~t ]]θ; I, X 7→ {~d | θ, ~x 7→ ~d; I |= (µX(~x). ϕ) ~x} |= ϕ

↔ θ, ~x 7→ [[~t ]]θ; I |= ϕ{(λ~x. (µX(~x). ϕ) ~x)/X} (Lemma A.2)

↔ θ, ~x 7→ [[~t ]]θ; I |= ϕ{(µX(~x). ϕ)/X} ((λ~x. f ~x) = f)
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Finite unrolling. Next we consider finite unrolling of fixed-points and its semantic interpretation. We
define the function UX,~xψ,n (ϕ), which unrolls the definition (X(~x) = ϕ) n times, using ψ for the base case
(ψ may mention contain the free variables ~x). The result is a predicate of the form λ~x. ϕ′. The function

UX,~xψ,n (ϕ) is defined by induction on n as follows.

UX,~xψ,0 (ϕ) = λ~x.ψ

UX,~xψ,n+1(ϕ) = λ~x.ϕ{UX,~xψ,n (ϕ)/X}

Lemma A.4 (Finite unrolling). θ; I |= (UX,~xψ,n (ϕ)) ~t if and only if [[~t ]]θ ∈ (FX,~xI,θ (ϕ))n({~d | θ, ~x 7→ ~d; I |= ψ}).

Proof. By induction on n.

Case. n = 0
θ; I |= (UX,~xψ,0 (ϕ)) ~t

↔ θ; I |= (λ~x.ψ) ~t (Defn. of UX,~xψ,0 (ϕ))

↔ θ; I |= ψ{~t/~x}
↔ θ, ~x 7→ [[~t ]]θ; I |= ψ (Lemma A.1)

↔ [[~t ]]θ ∈ {~d | θ, ~x 7→ ~d; I |= ψ} (Set-theory)

↔ [[~t ]]θ ∈ (FX,~xI,θ (ϕ))0({~d | θ, ~x 7→ ~d; I |= ψ}) (f0(x) = x)

Case. n = k + 1

θ; I |= (UX,~xψ,k+1(ϕ)) ~t

↔ θ; I |= (λ~x. ϕ{UX,~xψ,k (ϕ)/X}) ~t (Defn. of UX,~xψ,k+1(ϕ))

↔ θ; I |= ϕ{~t/~x}{UX,~xψ,k (ϕ)/X}
↔ θ; I |= ϕ{~t/~x}{(λ~x. (UX,~xψ,k (ϕ)) ~x)/X} (f = λ~x.(f ~x))

↔ θ; I, X 7→ {~d | θ, ~x 7→ ~d; I |= UX,~xψ,k (ϕ) ~x} |= ϕ{~t/~x} (Lemma A.2)

↔ θ; I, X 7→ {[[~t ]]θ | θ; I |= UX,~xψ,k (ϕ) ~t} |= ϕ{~t/~x} (Lemma A.1)

↔ θ, ~x 7→ [[~t ]]θ; I, X 7→ {[[~t ]]θ | θ; I |= UX,~xψ,k (ϕ) ~t} |= ϕ (Lemma A.1)

↔ θ, ~x 7→ [[~t ]]θ; I, X 7→ (FX,~xI,θ (ϕ))k({~d | θ, ~x 7→ ~d; I |= ψ}) |= ϕ (i.h.)

↔ [[~t ]]θ ∈ (FX,~xI,θ (ϕ))k+1({~d | θ, ~x 7→ ~d; I |= ψ}) (Defn. of FX,~xI,θ (ϕ))

B Proof System for LFP

We prove the proof theory of LFP sound with respect to the semantics of LFP.

Lemma B.1 (Soundness of sequent calculus). If Σ; Γ ` ∆ then for all interpretation I, for all substitution
θ, where dom(θ) = Σ, θ; I �

∧
Γ implies θ; I �

∨
∆

Proof. By induction on the structure of the derivation Σ; Γ ` ∆.
Case. µR
E :: Σ; Γ ` ϕ{µX(~x).ϕ/X}{~t/~x},∆

Σ; Γ ` µX(~x).ϕ ~t,∆
µR

By assumptions, given any I, θ where dom(θ) = Σ
θ; I �

∧
Γ

By I.H. on E
θ; I � ϕ{µX(~x).ϕ/X}{~t/~x} ∨

∨
∆

By Lemma A.3
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θ; I � ϕ{µX(~x).ϕ/X}{~t/~x} iff θ, ~x 7→ [[~t ]]θ; I � µX(~x).ϕ ~x
By Lemma A.1,

θ, ~x 7→ [[~t ]]θ; I � µX(~x).ϕ ~x iff θ; I � µX(~x).ϕ ~t
By the above two,

θ; I � µX(~x).ϕ ~t ∨
∨

∆

Case. µL
E1 :: Σ; Γ, ψ{~t/~x} ` ∆ E2 :: Σ, ~y; Γ, ϕ{λ~x.ψ/X}{~y/~x} ` ψ{~y/~x}

Σ; Γ, (µX(~x).ϕ)(~t) ` ∆
µL

By assumptions, given any I, θ where dom(θ) = Σ
θ; I �

∧
Γ ∧ µX(~x).ϕ ~t

θ; I � µX(~x).ϕ ~t
~t ∈ µS.FX,~xI,θ (ϕ)(S) = µS.{~d | θ, ~x 7→ ~d; I, X 7→ S � ϕ} (1)

By Knaster-Tarski theorem
the least fixed point of F is the intersection of pre-fixed points of F
µS.FX,~xI,θ (ϕ)(S) = ∩{S | FX,~xI,θ (ϕ)(S) ⊆ S}

By set theory
µS.FX,~xI,θ (ϕ)(S) is a subset of any S such that FX,~xI,θ (ϕ)(S) ⊆ S (2)

Let T = {~d | ~x 7→ ~d; I � ψ},
By Lemma A.2,

FX,~xI,θ (ϕ)(T ) = {~d | θ, ~x 7→ ~d; I, X 7→ T � ϕ} = {~d | θ, ~x 7→ ~d; I � ϕ{λ~x.ψ/X}} (3)
By I.H. on E2,
∀I ′, ∀θ′ where dom(θ′) = Σ, ~y
θ′; I ′ �

∧
Γ ∧ ϕ{λ~x.ψ/X}{~y/~x} implies θ′; I ′ � ψ{~y/~x}

{~d | θ, ~y 7→ ~d; I � ϕ{λ~x.ψ/X}{~y/~x}} ⊆ {~d | θ, ~y 7→ ~d; I � ψ{~y/~x}} (4)
By (3) and (4)

FX,~xI,θ (ϕ)(T ) ⊆ T
By (2)

µS.FX,~xI,θ (ϕ)(S) ⊆ T = {~d | θ, ~x 7→ ~d; I � ψ} (5)
By (1) and (5)

θ; I � ψ ~t
By I.H. on E1

θ; I �
∨

∆

Case. νR
E1 :: Σ; Γ ` ψ{~t/~x},∆ E2 :: Σ, ~y; Γ, ψ{~y/~x} ` ϕ{λ~x.ψ/X}{~y/~x}

Σ; Γ ` (νX(~x).ϕ)(~t),∆
νR

By assumptions, given any I, θ where dom(θ) = Σ
θ; I �

∧
Γ

By I.H. on E1
θ; I � ψ{~t/~x} ∨

∨
∆

If θ; I � ∆ then θ; I � (νX(~x).ϕ)(~t) ∨
∨

∆

otherwise θ; I � ψ{~t/~x}, therefore ~t ∈ {~d | θ, ~x 7→ ~d; I � ψ} (1)

By Knaster-Tarski theorem,
The greatest fixed point of F is the union of post-fixed points of F
νS.FX,~xI,θ (ϕ)(S) = ∪{S | S ⊆ FX,~xI,θ (ϕ)(S)}

By set theory
νS.FX,~xI,θ (ϕ)(S) is a superset of any S such that S ⊆ FX,~xI,θ (ϕ)(S) (2)

Let T = {~d | ~x 7→ ~d; I � ψ},
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By Lemma A.2,
FX,~xI,θ (ϕ)(T ) = {~d | θ, ~x 7→ ~d; I, X 7→ T � ϕ} = {~d | θ, ~x 7→ ~d; I � ϕ{λ~x.ψ/X}} (3)

By I.H. on E2,
∀I ′, ∀θ′ where dom(θ′) = Σ, ~y

θ′; I ′ � ψ{~y/~x} implies θ′; I ′ �
∧

Γ ∧ ϕ{λ~x.ψ/X}{~y/~x}

{~d | θ, ~y 7→ ~d; I � ψ{~y/~x}} ⊆ {~d | θ, ~y 7→ ~d; I � ϕ{λ~x.ψ/X}{~y/~x}} (4)
By (3) and (4)

T ⊆ FX,~xI,θ (ϕ)(T )
By (2)

T = {~d | θ, ~x 7→ ~d; I � ψ} ⊆ νS.FX,~xI,θ (ϕ)(S) (5)
By (1) and (5)

θ; I � νX(~x).ϕ ~t
θ; I � νX(~x).ϕ ~t ∨

∨
∆

C Model-Checking for LFP

This appendix proves that the model-checking tableau for LFP (Section 5.2) are sound. In order to do that,
we define the interpretation ιI(E ,∆) generated from a list of equations E and a list of assumptions ∆, given
an interpretation of predicates I. The interpretation is defined by induction on E .

ιI([ ],∆) = •
ιI(E :: (X 7→ λ~x.ϕ),∆ ∪ {X : S}) = I ′, X 7→ ν(λS′. [[S ]]• ∪ FX,~x(I,I′),•(ϕ)(S′)) (where I ′ = ιI(E ,∆))

Observe that since FX,~x(I,I′),•(ϕ)(S′) is a monotonic function of S′, it is also the case that λS′. [[S ]]• ∪
FX,~x(I,I′),•(ϕ)(S′) is a monotonic function. Hence, its greatest fixed-point in the second clause above exists.

Lemma C.1. Suppose that all free predicate variables of ϕ are defined in E. Then θ; I, ιI(E ,∆) |= ϕ iff
θ; I, ιI((E , E ′),∆) |= ϕ

Proof. By induction on E ′.

Lemma C.2 (Reduction; reproduced from [34]). Let f : 2A → 2A be a monotonic function. Then S ⊆ νf
if and only if S ⊆ f(ν(λS′. S ∪ f(S′))).

Lemma C.3 (Reduction for singletons). Let f : 2A → 2A be monotonic and suppose d 6∈ S ( A. Then,
d ∈ ν(λS′. S ∪ f(S′)) if and only if d ∈ f(ν(λS′. S ∪ {d} ∪ f(S′))).

Proof. We have:

d ∈ ν(λS′. S ∪ f(S′))
↔ {d} ⊆ ν(λS′. S ∪ f(S′))
↔ {d} ⊆ S ∪ f(ν(λS′. S ∪ {d} ∪ f(S′))) (Lemma C.2)
↔ d ∈ S ∪ f(ν(λS′. S ∪ {d} ∪ f(S′)))
↔ d ∈ f(ν(λS′. S ∪ {d} ∪ f(S′))) (Assumption that d 6∈ S)

Theorem C.4 (Soundness). σ; E ; ∆ ` ϕ implies •; Iσ, ιIσ (E ,∆) |= ϕ.
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Proof. We induct on the derivation of I; E ; ∆ ` ϕ, and case analyze its last rule.

Case.

[[~t ]]• ∈ Iσ(P )

σ; E ; ∆ ` P ~t
INIT

We need to show that •; Iσ, ιIσ (E ,∆) |= P ~t. By definition of the semantics, it suffices to show that
[[~t ]]• ∈ Iσ(P ), which is stated in the rule’s premise.

Case.

[[~t ]]• 6∈ Iσ(P )

σ; E ; ∆ ` ¬(P ~t)
¬

We need to show that •; Iσ, ιIσ (E ,∆) |= ¬(P ~t). By definition of the semantics, it suffices to show that
[[~t ]]• 6∈ Iσ(P ), which is stated in the rule’s premise.

Case. σ; E ; ∆ ` >
>

We have to show that •; Iσ, ιIσ (E ,∆) |= >, which always holds by definition of the semantics.

Case.

σ; E ; ∆ ` ϕ1 σ; E ; ∆ ` ϕ2

σ; E ; ∆ ` ϕ1 ∧ ϕ2

∧

We need to show that •; Iσ, ιIσ (E ,∆) |= ϕ1 ∧ ϕ2 or, equivalently, •; Iσ, ιIσ (E ,∆) |= ϕ1 and •; Iσ, ιIσ (E ,∆) |=
ϕ2. The latter two follow from i.h. on the premises.

Case.

σ; E ; ∆ ` ϕ1

σ; E ; ∆ ` ϕ1 ∨ ϕ2

∨1

We need to show that •; Iσ, ιIσ (E ,∆) |= ϕ1 ∨ ϕ2. By definition of the semantics, it suffices to show that
•; Iσ, ιIσ (E ,∆) |= ϕ1, which follows immediately from the i.h. applied to the premise.

Case.

σ; E ; ∆ ` ϕ2

σ; E ; ∆ ` ϕ1 ∨ ϕ2

∨2

Similar to the previous case.

Case.

all d ∈ D. (σ; E ; ∆ ` ϕ{d/x})
σ; E ; ∆ ` ∀x.ϕ

∀

We need to show that •; Iσ, ιIσ (E ,∆) |= ∀x.ϕ. By definition of the semantics, it suffices to show that for
any d ∈ D, •; Iσ, ιIσ (E ,∆) |= ϕ{d/x}. So pick any d ∈ D. By i.h. on the premise, •; Iσ, ιIσ (E ,∆) |= ϕ{d/x},
as required.

Case.

d ∈ D σ; E ; ∆ ` ϕ{d/x}
σ; E ; ∆ ` ∃x.ϕ

∃

We need to show that •; Iσ, ιIσ (E ,∆) |= ∃x.ϕ. By i.h. on the premise, •; Iσ, ιIσ (E ,∆) |= ϕ{d/x}. By
definition of semantics, •; Iσ, ιIσ (E ,∆) |= ∃x.ϕ, as required.

Case.

σ; E ; ∆ ` ϕ{~t/~x}{(µX(~x). ϕ)/X}
σ; E ; ∆ ` (µX(~x). ϕ) ~t

µ
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We need to show that •; Iσ, ιIσ (E ,∆) |= (µX(~x). ϕ) ~t. By i.h. on the premise we have •; Iσ, ιIσ (E ,∆) |=
ϕ{~t/~x}{(µX(~x). ϕ)/X}. Now we have:

•; Iσ, ιIσ (E ,∆) |= ϕ{~t/~x}{(µX(~x). ϕ)/X}
↔ ~x 7→ [[~t ]]•; Iσ, ιIσ (E ,∆) |= ϕ{(µX(~x). ϕ)/X} (Lemma A.1)

↔ •; Iσ, ιIσ (E ,∆) |= (µX(~x). ϕ) ~t (Lemma A.3)

Case.

σ; E , X ⇒ λ~x.ϕ; ∆, X : {} ` X ~t (X fresh)

σ; E ; ∆ ` (νX(~x). ϕ) ~t
ν

We need to show that •; Iσ, ιIσ (E ,∆) |= (νX(~x). ϕ) ~t. Let E ′ = E , X ⇒ λ~x.ϕ and ∆′ = ∆, X : {}. Then,

•; Iσ, ιIσ (E ′,∆′) |= X ~t (i.h.)

↔ [[~t ]]• ∈ ιIσ (E ′,∆′)(X) (Defn. of θ; Iσ |= ·)
↔ [[~t ]]• ∈ ν(λS′. {} ∪ FX,~x(Iσ,ιIσ (E,∆′)),•(ϕ)(S′)) (Defn. of ιIσ (E ′,∆′) and X : {} ∈ ∆′)

↔ [[~t ]]• ∈ ν(λS′. FX,~x(Iσ,ιIσ (E,∆′)),•(ϕ)(S′))

↔ [[~t ]]• ∈ ν(FX,~x(Iσ,ιIσ (E,∆′)),•(ϕ)) (λx.(f x) = f)

↔ [[~t ]]• ∈ ν(FX,~x(Iσ,ιIσ (E,∆)),•(ϕ)) (Defined-variables(E) ⊆ ∆)

↔ •; Iσ, ιIσ (E ,∆) |= (νX(~x). ϕ) ~t (Defn. of θ; Iσ |= (νX(~x). ϕ) ~t)

Case.

[[~t ]]• ∈ [[S ]]•

σ; E ; ∆, X : S ` X ~t
X1

We want to show that •; Iσ, ιIσ (E , (∆, X : S)) |= X ~t or, equivalently, that [[~t ]]• ∈ ιIσ (E , (∆, X : S))(X).
Since some definition for X must exist in E , suppose that E = E1, (X ⇒ λ~x. ϕ), E2. Then, by defini-

tion of ιIσ we have: ιIσ (E , (∆, X : S))(X) = ν(λS′. [[S ]]• ∪ FX,~x(Iσ,ιIσ (E1,(∆,X:S))),•(ϕ)(S′)). Hence, it suf-

fices to show that [[~t ]]• ∈ ν(λS′. [[S ]]• ∪ FX,~x(Iσ,ιIσ (E1,(∆,X:S))),•(ϕ)(S′)). To avoid syntactic clutter, define

f = FX,~x(Iσ,ιIσ (E1,(∆,X:S))),•(ϕ). What we need to show then is that: [[~t ]]• ∈ ν(λS′. [[S ]]• ∪ f(S′)). Suppose

ν(λS′. [[S ]]•∪f(S′)) = S0. Because S0 is a fixed-point of λS′. [[S ]]•∪f(S′), it follows that S0 = [[S ]]•∪f(S0) ⊇
[[S ]]•. Since, by the premise of the rule, [[~t ]]• ∈ [[S ]]•, it follows that [[~t ]]• ∈ S0 = ν(λS′. [[S ]]• ∪ f(S′)), as
required.

Case.

[[~t ]]• 6∈ [[S ]]• (X ⇒ λ~x.ϕ) ∈ E σ; E ; ∆, X : S ∪ {~t} ` ϕ{~t/~x}
σ; E ; ∆, X : S ` X ~t

X2

Let ∆′ = ∆, X : S and let E = E1, (X ⇒ λ~x.ϕ), E2. We want to show that •; Iσ, ιIσ (E ,∆′) |= X ~t. We
have:

•; Iσ, ιIσ (E ,∆′) |= X ~t

↔ [[~t ]]• ∈ ιIσ (E ,∆′)(X) (Defn. of θ; Iσ |= ·)
↔ [[~t ]]• ∈ ν(λS′. [[S ]]• ∪ FX,~x(Iσ,ιIσ (E1,∆′)),•(ϕ)(S′)) (Defn. of ιIσ (E ,∆′))
↔ [[~t ]]• ∈ ν(λS′. [[S ]]• ∪ FX,~x(Iσ,ιIσ (E1,∆)),•(ϕ)(S′)) (Defined-variables(E1) ⊆ ∆)

↔ [[~t ]]• ∈ FX,~x(Iσ,ιIσ (E1,∆)),•(ϕ)(ν(λS′. [[S ]]• ∪ {[[~t ]]•} ∪ FX,~x(Iσ,ιIσ (E1,∆)),•(ϕ)(S′))) (Lemma C.3)

↔ ~x 7→ ~t; Iσ, ιIσ (E1,∆), X 7→ ν(λS′. [[S ]]• ∪ {[[~t ]]•} ∪ FX,~x(Iσ,ιIσ (E1,∆)),•(ϕ)(S′)) |= ϕ (Defn. of FX,~xIσ,θ(ϕ))

↔ ~x 7→ [[~t ]]•; Iσ, ιIσ ((E1, (X ⇒ λ~x.ϕ)), (∆, X : S ∪ {~t})) |= ϕ (Defn. of ι)

↔ ~x 7→ [[~t ]]•; Iσ, ιIσ (E , (∆, X : S ∪ {~t})) |= ϕ (Lemma C.1)

↔ •; Iσ, ιIσ (E , (∆, X : S ∪ {~t})) |= ϕ{~t/~x} (Lemma A.1)

The last statement follows from the i.h. So the first statement must also hold.
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Theorem C.5 (Soundness). Suppose ϕ has no free term and predicate variables and σ; •; • ` ϕ. Then,
•;σ |= ϕ.

Proof. Suppose σ; •; • ` ϕ. By Theorem C.4, •; Iσ |= ϕ. By definition of satisfaction on traces, this is the
same as •;σ |= ϕ.

D Local Feasibility

D.1 Formal Definitions

Strict Past Operator We define a strict past operator Qst φ as follows. Formula Qst φ holds in the
current state if φ holds in some state that is strictly earlier than the current state.

(Qst φ)@s , ∃s′. (s′ <st s) ∧ φ@s′

Trace Operations Given f and g, both of which are mappings from domain D1 to D2, we define f ∪ g as
follows:

(f ∪ g)(d) =


f(d) ∪ g(d) if d ∈ dom(f) ∩ dom(g)

f(d) if d ∈ dom(f) and d /∈ dom(g)

g(d) if d /∈ dom(f) and d ∈ dom(g)

Given f and g, both of which are mappings from domain D1 to D2, we define f t g as follows:

(f t g)(d) =


f(d) ∪ g(d) if d ∈ dom(f) ∩ dom(g) and f(d) = g(d)

f(d) if d ∈ dom(f) and d /∈ dom(g)

g(d) if d /∈ dom(f) and d ∈ dom(g)

Given f and g, both of which are mappings from domain D1 to mappings from D2 to D3, we define f tt g
as follows:

(f tt g)(d) =


f(d) t g(d) if d ∈ dom(f) ∩ dom(g)

f(d) if d ∈ dom(f) and d /∈ dom(g)

g(d) if d /∈ dom(f) and d ∈ dom(g)

Given f and g, both of which are mappings from domain D1 to mappings from D2 to D3, we define f d g
as follows:

(f d g)(d) =


f(d) ∪ g(d) if d ∈ dom(f) ∩ dom(g)

f(d) if d ∈ dom(f) and d /∈ dom(g)

g(d) if d /∈ dom(f) and d ∈ dom(g)

σ̂1 = (κ1, ρ
A
1 , ρ

B
1 , a1,¬a1, τ1, ι1), σ̂2 = (κ2, ρ

A
1 , ρ

B
2 , a2,¬a2, τ2, ι2).

σ̂1 ] σ̂2 = (κ1 tt κ2, ρ
A
1 tt ρA2 , ρB1 d ρB2 , a1 ∪ a2,¬a1 ∪ ¬a2, τ1 t τ2, ι1 ∪ ι2)

We say a mapping f from domain D1 to D2 is an extension of g (f ⊇ g), if ∀d ∈ dom(g), g(d) ⊆ f(d).
We say a mapping ff from domain D1 to a mapping from D2 to D3 is an extension of gg, if ∀d ∈ dom(gg),
gg(d) ⊆ ff(d).

We say a trace σ̂ is an extension of σ̂′, written σ̂ ⊇ σ̂′, if any mapping f in σ̂ is the extension of the
corresponding mapping f ′ in σ̂′.

We write σ |Ap = ∅ to mean that p is the performer of any of the actions in the range of function a.
We assume that each agent has some default knowledge. We write κp to denote a knowledge map where

κp(i)(p) is p’s default knowledge, for each i in the domain of κp.
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Feasibility Our definitions for feasibility rely on a recursively defined function (GF (j,Φ, Sa)) to generate
conditions that need to be satisfied at each state in an infinite run of the system (Figure 6). Each GF (j,Φ, Sa)
contains a hole ([ ]).We write GF (j,Φ, Sa)[R]~x to denote the predicate generated by unfolding the definition
of GF and plug R in the hole. The variables annotated in the subscripts of the hold appear free in R, and
are bound by quantifiers on the outer layers.

Ultimately, we care about GF (j,Φ, Sa)[true].

H(σ̂, i, Sa, t0) = (σ̂ |i−1= ∅) ∧ (σ̂ |i= σ̂) ∧ start(τ) = t0 ∧ ∀p ∈ Sa, (σ̂ |Ap = ∅) ∧ ∀p ∈ Sa, κ ⊇ κp
F (σ̂, i, Sa, t0) = ∀P ∈ range(a),∃p ∈ Sa such that p is the performer of P

∀P ∈ range(¬a), ∃p ∈ Sa such that p is the performer of P
∀k ∈ dom(σ̂), k ≥ i, start(τ) = t0

GF (0,Φ, Sa) = ∀σ̂0, H(σ̂0, 0, Sa, τ0(0)) ⊃
∃σ̂Sa0 , F (σ̂Sa0 , 0, Sa, τ0(0) ∧ σ̂0 ] σ̂Sa0 is well-defined
∀σ̂′, σ̂′ |0= ∅ ∧ σ̂′ ] σ̂0 ] σ̂Sa0 is well-defined ⊃
∀ G ϕi ∈ Φ,Tr(σ̂′ ] σ̂0 ] σ̂Sa0 ), 0 � ϕi
∧ [ ]σ̂0,σ̂Sa0

GF (j,Φ, Sa) =
GF (j − 1,Φ, Sa)[∀σ̂j , H(σ̂j , j, Sa, τ0(0)) ⊃

(∃σ̂Saj , F (σ̂Saj , j, Sa, τ0(0) ∧
⊎j
k=0 σ̂k ] σ̂

Sa
k is well-defined

∀σ̂′, σ̂′ |j= ∅ ∧ σ̂′ ]
⊎j
k=0 σ̂k ] σ̂

Sa
k is well-defined ⊃

∀ G ϕi ∈ Φ,Tr(σ̂′ ]
⊎j
k=0 σ̂k ] σ̂

Sa
k ), j � ϕi

∧ [ ]σ̂0,σ̂Sa0 ,···σ̂j−1,σ̂
Sa
j−1

]σ̂0,a0,¬a0,τ0,···σ̂j−1,σ̂
Sa
0 ,···σ̂j ,σ̂Saj

Figure 6: Feasibility

Def. A set of responsibilities Φ is feasible for a set of agents Sa if for all j iff GF (j,Φ, Sa)[true].

D.2 Lemmas and Definitions for Proving Local Feasibility Theorems

D.2.1 Locality

Def. Observable We say that ϕ is observable to an agent p is all the atomic formulas in ϕ describe states
or events observable to p. We write p ` ϕ Obs to mean that ϕ describes states and events that are observable
by p. Figure 7 shows the summary of rules.

Theorem D.1. If p ` ϕ Obs, then ϕ is local to agent p.

Proof (sketch): By induction on the structure of the derivation p ` ϕ Obs.

D.2.2 Lemmas and Definitions Related to Past Formulas

We define ϕpast to be temporal formulas that do not contain future operators. We prove the following lemma,
which states that given any state i, ϕpast does not concern any states that is later than i.

Lemma D.2 (Invariant of Past Formula (prefix)). For all j ≥ i, σ, i � ϕpast iff σ |j , i � ϕpast

Proof (sketch): By induction on the structure of ϕpast. We show a few key cases below.
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p ` ϕ Obs

p ` ⊥ Obs p ` > Obs

P is observable to p

p ` P Obs

p ` ϕ1 Obs p ` ϕ2 Obs

p ` ϕ1 ∧ ϕ2 Obs

p ` ϕ1 Obs p ` ϕ2 Obs

p ` ϕ1 ∨ ϕ2 Obs

p ` ϕ Obs

p ` ∃x.ϕ Obs

p ` ϕ Obs

p ` ∀x.ϕ Obs

p ` ϕ Obs

p ` ¬ϕ Obs

p ` ϕ Obs

p `Qϕ Obs

p ` ϕ Obs

p `Qst ϕ Obs

p ` ϕ Obs

p ``ϕ Obs

p ` ϕ1 Obs p ` ϕ2 Obs

p ` ϕ1 S ϕ2 Obs

p ` ϕ Obs

p `1ϕ Obs

p ` ϕ Obs

p `0ϕ Obs

p ` ϕ1 Obs p ` ϕ2 Obs

p ` ϕ1 U ϕ2 Obs

Figure 7: Observable Formulas

Case ϕpast = P (~t)

The validity of the atomic predicate P (~t),
depending on the following functions a(i), κ(i), ρ(i) and ι(i),
When j ≥ i, the projection does not affect those mappings.
Therefore, the conclusion holds.

Case ϕpast = ¬ϕpast1
The if direction

By assumption,
σ, i � ¬ϕpast1
σ, i 2 ϕpast1

By I.H. on ϕpast1,
σ |j , i 2 ϕpast1
σ |j , i � ¬ϕpast1

The only if direction
By assumption,

σ |j , i � ¬ϕpast1
σ |j , i 2 ϕpast1

By I.H. on ϕpast1,
σ, i 2 ϕpast1
σ, i � ¬ϕpast1

Case ϕpast =`ϕpast1
The if direction

By assumption,
σ, i �`ϕpast1

By the definition of �, for all k ≤ i,
σ, k � ϕpast1
k ≤ i ≤ j

By I.H. on ϕpast1,
σ |j , k � ϕpast1

By the definition of �,
σ |j , i �`ϕpast1

The only if direction
By assumption,

σ |j , i �`ϕpast1
By the definition of �, for all k ≤ i,

σ |j , k � ϕpast1
k ≤ i ≤ j

By I.H. on ϕpast1,
σ, k � ϕpast1

By the definition of �,
σ, i �`ϕpast1

Def. We write ϕp to denote persistent past formulas, which are formulas that are true in all future state of
i once it becomes true in state i. It is defined as follows. We use two auxiliary definitions Pp, which denotes
atomic predicates that are true in all states; and Psp, which denotes all other predicates.

Persistent Form Pp : : = contains(m, · · · ) | · · ·
Persistent Effect Form Psp : : = Ap | inrole(p, r) | · · ·
Persistent Past Form ϕp : : = > | PP | ϕp ∧ ϕp | ϕp ∨ ϕp | ∀x.ϕp | ∃x.ϕp | QPsp |Qst Psp

| Qϕp |Qst ϕp | ϕp S ϕpast

Lemma D.3 (Persistent Past).
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σ, i � ϕp implies σ, i � �ϕp

Proof (sketch): By induction on the structure of ϕp
Judgment ~x ` ϕ fin holds on a past formula ϕ if variables ~x are free in formula ϕ, and given any state

on a trace, there is only finite number of substitutions δ for ~x such that δϕ is valid in that state. We define
rules for this judgment in Figure 8.

~x ` ϕ fin

fv(~t) ⊇ ~x and for all σ, for all i, the set of grounding substitutions ∆ for fv(~t)
such that for all δ ∈ ∆, σ, i � δ(P ~x) is finite

~x ` P ~t fin

~x1 ` ϕ1 fin ~x2 ` ϕ2 fin ~x = ~x1 ∪ ~x2

~x ` ϕ1 ∧ ϕ2 fin

~x ` ϕ1 fin ~x ` ϕ2 fin

~x ` ϕ1 ∨ ϕ2 fin

~x, y ` ϕ fin

~x ` ∃y.ϕ fin

~x ` ϕ fin

~x `Qϕ fin

~x ` ϕ fin

~x ``ϕ fin

~x ` ϕ2 fin ` ϕ1 past

~x ` ϕ1 S ϕ2 fin

~x ` ϕ fin

~x `Qst ϕ fin

Figure 8: Judgment for Past Formulas with Finite Substitutions

Lemma D.4 (Finite Substitution). If ~x ` ϕ fin, then for all σ, for all i, the set of all grounding substitutions
δ for ~x, such that σ, i � δϕ is finite.

Proof (sketch): By induction on the derivation ~x ` ϕ fin.

Def. Strict Past In order for the actions from different agents to compose nicely, we need to make sure
that an agent p’s plan is not affected by the changes in the current state caused by another b. Otherwise, we
would not be able to achieve a stable system. We define a syntactic check on a past formula p ` ϕ StrictPast.
The definitions are in Figure 9.

p ` ϕ StrictPast

p ` ⊥ StrictPast p ` > StrictPast

P = Ap or P depends on the default knowledge of p

p ` P StrictPast

p ` ϕ1 StrictPast p ` ϕ2 StrictPast

p ` ϕ1 ∧ ϕ2 StrictPast

p ` ϕ1 StrictPast p ` ϕ2 StrictPast

p ` ϕ1 ∨ ϕ2 StrictPast

p ` ϕ StrictPast

p ` ∃x.ϕ StrictPast

p ` ϕ StrictPast

p ` ∀x.ϕ StrictPast

p ` ϕ StrictPast

p ` ¬ϕ StrictPast

p ` ϕ StrictPast

p `Qϕ StrictPast

ϕ is a past formula

p `Qst ϕ StrictPast

p ` ϕ StrictPast

p ``ϕ StrictPast

p ` ϕ1 StrictPast p ` ϕ2 StrictPast

p ` ϕ1 S ϕ2 StrictPast

Figure 9: Strictly Past
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Lemma D.5 (Invariant of Strictly Past Formula).
If p ` ϕ StrictPast, given any σ and σ′, such that

1. κ ⊇ κp and κ′ ⊇ κp

2. p is not the performer of any of the actions in the range of a′,

3. σ′ |i−1= ∅
4. σ ] σ′ is well-defined

then σ, i � ϕ iff σ ] σ′, i � ϕ.

Proof (sketch): By induction on the structure of a ` ϕ StrictPast. We show a few key cases below.

Case: ϕ = P (~t).
If direction

By assumption,

σ, i � P (~t)

P (~t) = Ap ∈ a(i), or P (~t) is justified by κp

the above conditions still hold for σ ] σ′
therefore, σ ] σ′, i � P (~t)

Only if direction
By assumption,

σ ] σ′, i � P (~t)

P (~t) = Ap ∈ a(i) ∪ a′(i), or P (~t) is justified by κp

By assumption, p is not the performer of any actions in a′(i)

P (~t) ∈ a(i), or P (~t) is justified by κp

therefore, σ, i � P (~t)

Case:

ϕ is a past formula

p `Qst ϕ StrictPast
By assumption,

σ′ |i−1= ∅ (1)
By (1) and the definition of projection,

∀k < i, σ |k= (σ ] σ′) |k (2)
By Lemma D.2,

σ |k, k � ϕ iff σ, k � ϕ (3)
By Lemma D.2,

σ ] σ′ |k, k � ϕ iff σ ] σ′, k � ϕ (4)
By (2),(3) and (4),

σ, k � ϕ iff σ ] σ′, k � ϕ (5)
By (5),

σ, i �Qst ϕ iff σ ] σ′, i �Qst ϕ (6)

Def. Judgment {P1, · · · , Pn} ` ϕpast holds when the validity of predicates P1 to Pn in a state i are irrelevant
to the validity of ϕpast in that state. It is defined in Figure 10.

Lemma D.6 (Invariant of Past Formulas).
If SP ` ϕ, given σ, σ′ such that

1. σ′ |i−1= ∅,
2. j ≥ i, for all P ∈ a′(j), exists P ′ ∈ SP and δ such that δP = δP ′,

3. σ ] σ′ is well-defined
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{P1, · · · , Pn} ` ϕ

SP ` > SP ` ⊥
@δ st. δPi = δAp

{P1, · · · , Pn} ` Ap
SP ` ϕ
SP ` ¬ϕ

SP ` ϕ1 SP ` ϕ2

SP ` ϕ1 ∧ ϕ2

SP ` ϕ1 SP ` ϕ2

SP ` ϕ1 ∨ ϕ2

SP ` ϕ
SP ` ∃x.ϕ

SP ` ϕ
SP ` ∀x.ϕ

SP ` ϕ
SP `Qϕ

SP ` ϕ
SP ``ϕ

ϕ is a past formula

SP `Qst ϕ

SP ` ϕ1 SP ` ϕ2

SP ` ϕ1 S ϕ2

Figure 10: Irrelevant Past

then σ, i � ϕ iff σ ] σ′, i � ϕ.

Proof (sketch): By induction on the structure of the derivation SP ` ϕ.

Case: ϕ = Ap.
If direction

By assumption,
σ, i � Ap

Ap ∈ a(i)
Ap ∈ a(i) ∪ a′(i)
therefore, σ ] σ′, i � Ap

Only if direction
By assumption,

σ ] σ′, i � Ap
Ap ∈ a(i) ∪ a′(i)

By assumption,
Ap /∈ a′(i)
Ap ∈ a(i)
therefore, σ, i � Ap

Case:

ϕ is a past formula

SP `Qst ϕ
By assumption,

σ′ |i−1= ∅ (1)
By (1) and the definition of projection,

∀k < i, σ |k= (σ ] σ′) |k (2)
By Lemma D.2,

σ |k, k � ϕ iff σ, k � ϕ (3)
By Lemma D.2,

σ ] σ′ |k, k � ϕ iff σ ] σ′, k � ϕ (4)
By (2),(3) and (4),

σ, k � ϕ iff σ ] σ′, k � ϕ (5)
By (5),

σ, i �Qst ϕ iff σ ] σ′, i �Qst ϕ (6)
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Σ; Γ ` ϕ∗f sat well-formed constraints on time points

Σ; Γ ` > sat Σ; Γ ` ⊥ sat Σ; Γ ` Ap sat Σ; Γ ` ¬Ap sat

Σ; Γ ` ϕ∗f1(p) sat Σ; Γ ` ϕ∗f2(p) sat

Σ; Γ ` ϕ∗f1(p) ∧ ϕ∗f2(p) sat

Σ; Γ ` ϕ∗f (p) sat

Σ; Γ ` ϕ∗f (p) ∨ ϕ sat

Σ; Γ ` ϕ+
f (p) sat

Σ; Γ ` ∃x.Kp(x) ∧ ϕ+
f (p) sat

Σ; Γ ` ϕ−f (p) sat

Σ; Γ ` ∀x.ϕ−f (p) sat

x; · ` ϕ∗f (p) sat

·; · ` ↓x.ϕ∗f (p) sat

Σ, y, x; Γ, y ≤ x ` ϕ∗f (p) sat

Σ, y; Γ ` ↓x.ϕ∗f (p) sat

Σ; Γ ` ϕ∗f (p) sat

Σ; Γ `1ϕ∗f (p) sat

Σ; Γ ` ϕ∗f (p) sat

Σ; Γ `0ϕ∗f (p) sat

Σ; Γ ` ϕ∗f1(p) sat Σ; Γ ` ϕ∗f2(p) sat

Σ; Γ ` ϕ∗f1(p) U ϕ∗f2(p) sat

Σ, y, x; Γ, y ≤ x, c(x) ` ϕ∗f (p) sat Σ, y; Γ ` ∃x.y ≤ x ∧ c(x)

Σ, y; Γ `1↓x. c(x) ∧ ϕ∗f (p) sat

Σ, y; Γ ` ϕ∗f1(p) sat Σ, y, x; Γ, y ≤ x, c(x) ` ϕ∗f2(p) sat Σ, y; Γ ` ∃x.y ≤ x ∧ c(x)

Σ, y; Γ ` ϕ∗f1 U (↓x. c(x) ∧ ϕ∗f2(p))

Figure 11: Rules for Checking Conditions for Time Points

D.2.3 Lemmas and Definitions for ϕ−c and ϕ∗f

Satisfiability of Constraints on Time Points Formulas such as ϕ+
f (p) and ϕ−f (p) can be used to encode

an agent p’s obligations. One can use the freeze operator to express a time bound on when p has to finish his
obligation. For such obligations to be feasible for p, constraints expressing these bounds should be satisfiable.
Judgment Σ; Γ ` ϕ∗f sat states that all the constraints on time points in ϕ∗f are satisfiable. Σ contain all
the free time variables in ϕ∗f and Γ; and Γ is the context containing assumptions about various time points.
The rules are shown in Figure 11.

Lemma D.7 (Substitution for Conditions).
If Σ; Γ ` ϕ∗f (p) sat , and dom(δ) ∩ Σ = ∅, then Σ; Γ ` (δϕ∗f (p)) sat

Proof (sketch): By induction on the derivation Σ; Γ ` ϕ∗f (p).

Lemma D.8 (Time Points Substitution for Conditions).
If Σ1,Σ2; Γ ` ϕ∗f (p) sat , and dom(δ) = Σ1, then Σ2; δΓ ` (δϕ∗f (p)) sat

Proof (sketch): By induction on the derivation Σ1,Σ2; Γ ` ϕ∗f (p).

Relevant Actions in ϕ−c and ϕ∗f To precisely state what kind of actions and inaction an agent p need

to plan for to fulfill her responsibilities, we define a function Ac(ϕ−c (p)) to extract relevant actions in ϕ−c (p),
and Af (ϕ∗f (p)) to extract relevant actions in ϕ∗f (p). Detailed rules are defined in Figure 12.

Lemma D.9 (Substitution for Actions).

1. Ac(ϕ−c (p){t/x}) = (Ac(ϕ−c (p))){t/x}

2. Ac(ϕ∗f (p){t/x}) = (Ac(ϕ∗f (p))){t/x}
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Ac(ϕ−c ) the set of inactions involved in causing ϕ−c to be false.

Ac(Ap) = {Ap} Ac(ϕ−c1 ∨ ϕ−c2) = Ac(ϕ−c1) ∪ Ac(ϕ−c2) Ac(ϕ−c ∧ ϕ) = Ac(ϕ−c )

Ac(∃x.ϕ−c ) = Ac({a/x}ϕ−c ) a is fresh

Af (ϕ∗f ) the set of actions (inactions) involved in causing ϕ∗f to be true.

Af (Ap) = {Ap} Af (¬Ap) = {Ap} Af (ϕ∗f ∨ ϕ) = Af (ϕ∗f ) Af (ϕ∗f1 ∧ ϕ∗f2) = Af (ϕ∗f1) ∪ Af (ϕ∗f2)

Af (Uop ϕ
∗
f ) = Af (ϕ∗f ) Af (∃x.ϕ∗f ) = Af ({a/x}ϕ∗f ) a is fresh Af (ϕ∗f ) = ∅ for all other cases

Figure 12: Function for Extracting Actions

σ̂, i 1 ϕ−c

σ̂, i 1 ⊥ always
σ̂, i 1 Ap iff Ap ∈ ¬a(i)
σ̂, i 1 ϕ−c ∧ ϕ iff σ̂, i 1 ϕ−c
σ̂, i 1 ϕ−c1 ∨ ϕ

−
c2 iff σ̂, i 1 ϕ−c1 and σ̂, i 1 ϕ−c2

σ̂, i 1 ∃x.ϕ−c iff for all t, σ̂, i 1 {t/x}ϕ−c

σ̂, i  ϕ∗f

σ̂, i  > always
σ̂, i  ⊥ never
σ̂, i  Ap iff Ap ∈ a(i)
σ̂, i  ¬Ap iff Ap ∈ ¬a(i)
σ̂, i  ϕ∗f ∨ ϕ iff σ̂, i  ϕ∗f
σ̂, i  ∃x.Kp(x) ∧ ϕ+

f iff exists t such that σ̂, i  {t/x}ϕ+
f

and Tr(σ̂), i � Kp(t)
σ̂, i  ∀x.ϕ−f iff forall, t σ̂, i  {t/x}ϕ−f
σ̂, i  ↓x.ϕ−f iff σ̂, i  {τ(i)/x}ϕ−f
σ̂, i 1ϕ∗f iff exists j such that j ≥ i and σ̂, j  ϕ∗f
σ̂, i 0ϕ∗f iff for all j such that j ≥ i and σ̂, j  ϕ∗f
σ̂, i  ϕ∗f1 U ϕ∗f2 iff existsj, j ≥ iand σ̂, j  ϕ∗f2 and ∀i ≥ k < j, σ̂, k  ϕ∗f1

σ̂, i  c(t) ∧ ϕ+
f iff σ̂, i  ϕ+

f and Tr(σ̂), i � c(t)
σ̂, i  ∀x.ϕ−f iff for all, t σ̂, i  {t/x}ϕ−f

Figure 13: Non-standard Semantics for Planned Traces

Semantics for Planned Traces Because the conjunction in ϕ−c and the disjunction in ϕ∗f allows arbitrary
formula as one of the subformulas, we define a non-standard semantics (Figure 13).

Lemma D.10 (Soundness of Planned trace semantics).

• if σ̂  ϕ∗f , and wf(σ̂), then Tr(σ̂) � ϕ∗f

• if σ̂ 1 ϕ−c , and wf(σ̂), then Tr(σ̂) 2 ϕ−c
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Proof. By induction on the structure of the formula.

We further define non-standard semantics for the three main forms of responsibilities.

σ̂, i  ∀~x.ϕ−c ⊃ ϕpast iff for all ~t for ~x, either σ̂, i 1 ϕ−c {~t/~x} or Tr(σ̂), i � ϕpast{~t/~x}
σ̂, i  ∀~x.ϕpast ⊃ ϕ+

f iff for all ~t for ~x, such that Tr(σ̂), i � ϕpast{~t/~x} implies σ̂, i  ϕ+
f {~t/~x}

σ̂, i  ∀~x.ϕpast ⊃ ϕ−f iff for all ~t for ~x, σ̂, i  ϕ−f {~t/~x}

Lemma D.11 (Soundness of non-standard Semantics). if σ̂  ϕi as defined above then Tr(σ̂) � ϕi

Proof. By Lemma D.10.

Key Lemmas About ϕ−c and ϕ∗f

Lemma D.12 (Monotonicity of ϕ−c ).
Given any σ, i and σ′ such that σ ] σ′ is well-defined and σ, i 1 ϕ−c (p) implies σ ] σ′, i 1 ϕ−c (p)

Proof (sketch): By induction on the structure of ϕ−c .

Lemma D.13 (Feasibility of ϕ−c (p)).
For all i, there exists a set of inactions NAS such that

I. p is the performer of all actions in NAS,

II. for all P (~s) ∈ NAS there exists a P (~w) ∈ Ac(ϕ−c (p)) such that there exists a substitution δ, and
P (δ(~s) = P (δ(~w)).

III. for all σ̂, ¬a(i) ⊇ NAS, σ̂, i 1 ϕ−c

Proof. By induction on the structure of ϕ−c .

Case ϕ−c = ⊥
NAS = {}

Case ϕ−c = Ap

NAS = {Ap}
Given σ̂, such that ¬a(i) ⊇ {Ap} ,
By Definition of σ̂, i 1 ϕ−c ,

σ̂, i 1 Ap

Case ϕ−c = ϕ−c1(p) ∧ ϕ
By I.H. on ϕ−c1(p), there exists a set of inactions NAS 1, such that

p is the performer of all actions in NAS 1 (1)
for all P (~s) ∈ NAS 1 there exists a P (~w) ∈ Ac(ϕ−c1(p)) such that
there exists a substitution δ, and P (δ~s) = P (δ ~w). (2)

for all σ̂1,¬a(i) ⊇ NAS , σ̂1, i 1 ϕ−c1(p) (3)
let NAS = NAS 1,
By (1), I holds
By Definition of Ac(ϕ−c ),

Ac(ϕ−c1(p) ∧ ϕ) = Ac(ϕ−c1(p)) (4)
By (4) and (2), II holds
By Given any σ̂, such that a(i) ⊇ NAS
By (3),

σ̂, i 1 ϕ−c1(p) (5)
By Definition of 1 and (5),

σ̂, i 1 ϕ−c1(p) ∧ ϕ (6)
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Case ϕ−c = ϕ−c1(p) ∧ ϕ−c2(p)
By I.H. on ϕ−c1(p), there exists a set of inactions NAS 1, such that

p is the performer of all actions in NAS 1 (1)
for all P (~s) ∈ NAS 1 there exists a P (~w) ∈ Ac(ϕ−c1(p)) such that
there exists a substitution δ, and P (δ~s) = P (δ ~w). (2)

for all σ̂1,¬a1(i) ⊇ NAS , σ̂1, i 1 ϕ−c1(p) (3)
By I.H. on ϕ−c2(p), there exists a set of inactions NAS 1, such that

p is the performer of all actions in NAS 2 (4)
for all P (~s) ∈ NAS 2 there exists a P (~w) ∈ Ac(ϕ−c2(p)) such that
there exists a substitution δ, and P (δ~s) = P (δ ~w). (5)

for all σ̂2,¬a2(i) ⊇ NAS , σ̂2, i 1 ϕ−c2(p) (6)
let NAS = NAS 1 ∪NAS 2,
By (1) and (4), I holds
By Definition of Ac(ϕ−c ),

Ac(ϕ−c1(p) ∧ ϕ−c2(p)) = Ac(ϕ−c1(p)) ∪ Ac(ϕ−c2(p)) (7)
By (7), (2) and (5), II holds
By Given any σ̂, such that a(i) ⊇ NAS
By (3),

σ̂, i 1 ϕ−c1(p) (8)
By (6),

σ̂, i 1 ϕ−c2(p) (9)
By Definition of 1,(8) and (9),

σ̂, i 1 ϕ−c1(p) ∧ ϕ−c2(p) (10)

Case ϕ−c = ∃x.ϕ−c1(p)
For all t,
By I.H. on ϕ−c1(p){t/x}, there exists a set of inactions NAS t, such that

p is the performer of all actions in NAS t (1)
for all P (~s) ∈ NAS t there exists a P (~w) ∈ Ac(ϕ−c1(p){t/x}) such that
there exists a substitution δ, and P (δ~s) = P (δ ~w). (2)

for all σ̂1,¬a(i) ⊇ NAS t, σ̂1, i 1 ϕ−c1(p){t/x} (3)
let NAS =

⋃
t NAS t,

By (1), I holds
By Definition of Ac(ϕ−c ),

Ac(∃x.ϕ−c1(p)) = Ac(ϕ−c1(p)) (4)
By Lemma D.9,

Ac(ϕ−c1(p){t/x}) = (Ac(ϕ−c1(p))){t/x} (5)
By (4), (2) and (5), given any P (~s) ∈ NAS

exists P ( ~w1) ∈ (Ac(ϕ−c1(p))) such that δ1 = (δ, t/x) andP (δ~s) = P (δ1 ~w1) = P (δ ~w) (6)
By Given any σ̂, such that a(i) ⊇ NAS ⊇ NAS t
By (3),

σ̂, i 1 ϕ−c1(p){t/x} (7)
By Definition of 1 and (7),

σ̂, i 1 ∃x.ϕ−c1(p) (8)

Lemma D.14 (Feasibility of Conditions). Given a condition Kp(~x), for all i, exists ~t such that for all σ̂,
κ ⊇ κp, σ̂, i ` Kp(~t).

Proof (sketch): By induction on the structure of Kp(~x)
We further assume that solutions for the constraint c(x) on time points are multiples of ı.
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Lemma D.15 (Monotonicity of ϕ+
f ).

If σ̂, i  ϕ+
f (p), given σ̂′, such that σ̂ ] σ̂′ is defined, then σ̂ ] σ̂′, i  ϕ+

f (p)

Proof (sketch): By induction on the structure of ϕ+
f (p).

Lemma D.16 (Feasibility of ϕ+
f (p)).

If Σ; Γ ` ϕ+
f (p) sat then ∀t0, ∀i, ∀δ such that

1. ∀t ∈ range(δ), ∃n ≥ 0, t = t0 + n · ı
2. δ(x) ≤ δ(y) if x appears before y in Σ

3. δ(z) = t0 + i · ı where Σ = Σ′, z

4. � δΓ

there exists a finite action map a′, and τ ′ such that start(τ ′) = t0

I. ∀j ∈ dom(a′), j ≥ i, ∀j ∈ dom(τ), j ≥ i
II. p is the performer of all actions in the range of a′,

III. for all P (~s) ∈ range(a′) there exists a P (~w) ∈ Af (ϕ+
f (p)) such that there exists a substitution δ0, and

P (δ0(~s) = P (δ0(~w)).

IV. for all σ̂, σ̂ ⊇ (κp, ∅, ∅, a′, ∅, τ ′, ∅), σ̂, i  δϕ+
f (p)

Proof. By induction on the structure of ϕ+
f (p).

Most cases are straightforward, and we only give a′ and τ ′. We focus on a few key cases involving the
freeze operator.

Case ϕ+
f (p) = >, a′ = ∅ and τ ′ = ∅

Case ϕ+
f (p) = Ap

a′(i) = {δAp}, and τ ′ = {i 7→ t0 + i · ı}

Case ϕ+
f (p) = ϕ+

f1(p) ∧ ϕ+
f2(p)

By I.H. on ϕ+
f1(p), there exists τ1 and a1 that satisfy all the conditions

By I.H. on ϕ+
f2(p), there exists τ2 and a2 that satisfy all the conditions

τ ′ = τ1 t τ2, and a′ = a1 ∪ a2,

Case ϕ+
f (p) = ϕ+

f1(p) ∨ ϕ
By I.H. on ϕ+

f1(p), there exists τ1 and a1 that satisfy all the conditions

τ ′ = τ1, and a′ = a1,

Case ϕ+
f (p) = ∃x.Kp(x) ∧ ϕ+

f1(p)

By A,ssumptions
Σ; Γ ` ϕ+

f1(p) sat

Σ; Γ ` ∃x.Kp(x) ∧ ϕ+
f1(p) sat

(1)

Given t0, i, δ such that,
∀t ∈ range(δ),∃n ≥ 0, t = t0 + n · ı (2)
δ(x) ≤ δ(y) if x appears before y in Σ (3)
δ(z) = t0 + i · ı where Σ = Σ′, z (4)
� δΓ (5)

By Lemma D.14,
exists t such that for all σ̂ such that κ ⊇ κp, σ̂, i ` δKp(t) (6)

By Lemma D.7 and (1),
Σ; Γ ` ϕ∗f1(p){t/x} sat (7)
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By I.H. on ϕ∗f1(p){t/x}, and (1) to (5),

there exists an action map a1, and τ1 such that start(τ1) = t0
∀j ∈ dom(a1), j ≥ i, and ∀j ∈ dom(τ1), j ≥ i (8)
p is the performer of all actions in the range of a1 (9)
for all P (~s) ∈ range(a1) there exists a P (~w) ∈ Af (ϕ+

f (p){t/x}) such that

there exists a substitution δ0, and P (δ0~s) = P (δ0(~w)). (10)
∀σ̂, σ̂ ⊇ (κp, ∅, ∅, a1, ∅, τ1, ∅), σ̂, i  δϕ+

f1(p){t/x} (11)

let τ ′ = τ1, a′ = a1

By (8), I holds
By (9), II holds
By Definition of Af (ϕ+

f (p)),

Af (∃x.Kp(x) ∧ ϕ+
f1(p)) = Af (ϕ+

f1(p)) (12)

By Lemma D.9,
Af (ϕ+

f1(p){t/x}) = (Af (ϕ+
f1(p))){t/x} (13)

By (12), (10) and (13), given any P (~s) ∈ range(a)
exists P ( ~w1) ∈ (Af (ϕ+

f1(p))) such that δ1 = (δ0, t/x) and P (δ0~s) = P (δ1 ~w1) = P (δ0 ~w) (14)

Give σ̂, σ̂ ⊇ (κp, ∅, ∅, a′, ∅, τ ′, ∅)
By (11),

σ̂, i  δϕ+
f1(p){t/x} (15)

By (15), (6),
σ̂, i  δ(∃x.Kp(x) ∧ ϕ+

f1(p)) (16)

Case ϕ+
f (p) =1ϕ+

f1(p)

By I.H. on ϕ+
f1(p), there exists a1 and τ1 that satisfy all the conditions

a′ = a1 and τ ′ = τ1,

Case ϕ+
f (p) = ϕ+

f2(p) U ϕ+
f1(p)

By I.H. on ϕ+
f1(p), there exists a1 and τ1 that satisfy all the conditions

κ = κ, a′ = a1 and τ ′ = τ1,

Case ϕ+
f (p) =0ϕ+

f1(p)

By A,ssumptions
Σ; Γ ` ϕ+

f1(p) sat

Σ; Γ `0ϕ+
f1(p) sat

(1)

Given t0, i, δ such that
∀t ∈ range(δ),∃n ≥ 0, t = t0 + n · ı (2)
δ(x) ≤ δ(y) if x appears before y in Σ (3)
δ(z) = τ(i) where Σ = Σ′, z (4)
� δΓ (5)

By Lemma D.8 and (1),
·; δΓ ` δϕ+

f1(p) sat (6)

Given any k, k ≥ i, by I.H. on δϕ+
f1(p),

there exists an action map ak, and τk such that start(τk) = t0
∀j ∈ dom(ak), j ≥ k, and ∀j ∈ dom(τk), j ≥ k (7)
p is the performer of all actions in the range of a1 (8)
for all P (~s) ∈ range(ak) there exists a P (~w) ∈ Af (δϕ+

f (p)) such that

there exists a substitution δ0, and P (δ0~s) = P (δ0(~w)). (9)
∀σ̂, σ̂ ⊇ (κp, ∅, ∅, ak, ∅, τk, ∅), σ̂, k  δϕ+

f (p) (10)

let a′ =
⋃∞
k=1 ak, τ ′ =

⊔∞
k=1 τk

By (7), I holds
By (8), II holds
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By (9) and Lemma D.9, III holds
Give σ̂, σ̂ ⊇ (κp, ∅, ∅, a′, ∅, τ ′, ∅)
By (10) and the definition of ,

σ̂, i  δ0ϕ+
f1(p) (11)

Case ϕ+
f (p) = ↓x.ϕ+

f1(p)

By Assumptions,
x; · ` ϕ+

f1(p) sat

·; · ` ↓x.ϕ+
f1(p) sat

(1)

Given t0, i (because Σ is empty, δ is empty also),
By I.H. on ϕ+

f1(p), let δ = t0 + i · ı/x
there exists an action map a1, and τ1 such that start(τ1) = t0

∀j ∈ dom(a1), j ≥ i, and ∀j ∈ dom(τ1), j ≥ i (2)
p is the performer of all actions in the range of a1 (3)
for all P (~s) ∈ range(a1) there exists a P (~w) ∈ Af (ϕ+

f (p)) such that

there exists a substitution δ0, and P (δ0~s) = P (δ0(~w)). (4)
∀σ̂, σ̂ ⊇ (κp, ∅, ∅, a1, ∅, τ1, ∅), σ̂, i  δϕ+

f (p) (5)

let τ ′ = τ1 and a′ = a1,
By (2), I holds
By (3), II holds
By (4), III holds
Give σ̂, σ̂ ⊇ (κp, ∅, ∅, a′, ∅, τ ′, ∅)
By (5), δ = τ ′(i)/x and the definition of ,

σ̂, i  ↓x.ϕ+
f1(p) (6)

Case ϕ+
f (p) = ↓x.ϕ+

f1(p)

Σ, y, x; Γ, y ≤ x ` ϕ+
f (p) sat

Σ, y; Γ ` ↓x.ϕ+
f (p) sat

(1)

Given t0, i, δ such that,
∀t ∈ range(δ),∃n ≥ 0, t = t0 + n · ı (2)
δ(x′) ≤ δ(y′) if x′ appears before y′ in Σ, y (3)
δ(z) = t0 where Σ = Σ′, z (4)
� δΓ (5)

let δ1 = δ, t0 + i · ı/x,
By (2),

∀t ∈ range(δ1),∃n ≥ 0, t = t0 + n · ı (6)
By (3), (4),

δ(y) = δ1(x), therefore δ1(x′) ≤ δ1(y′) if x appears before y in Σ, y, x (7)
By (5), and δ1(y) = δ1(x) = t0 + i · ı

` δ1(Γ, y ≤ x) (8)
By I.H. on ϕ+

f1(p), and (6) to (8),

there exists an action map a1, and τ1 such that start(τ1) = t0
∀j ∈ dom(a1), j ≥ i, and ∀j ∈ dom(τ1), j ≥ i (9)
p is the performer of all actions in the range of a1 (10)
for all P (~s) ∈ range(a1) there exists a P (~w) ∈ Af (ϕ+

f (p){t/x}) such that

there exists a substitution δ0, and P (δ0~s) = P (δ0(~w)). (11)
∀σ̂, σ̂ ⊇ (κp, ∅, ∅, a1, ∅, τ1, ∅), σ̂, i  δ1ϕ+

f (p) (12)

let τ ′ = τ1, a′ = a1

By (9), I holds
By (10), II holds
By (11), III holds
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Give σ̂, σ̂ ⊇ (κ, ∅, ∅, a′, ∅, τ ′, ∅)
By (12), δ1 = δ, τ ′(i)/x and the definition of ,

σ̂, i  δ↓x.ϕ+
f1(p) (13)

Case ϕ+
f (p) =1↓x. c(x) ∧ ϕ+

f (p)

E1 :: Σ, y, x; Γ, y ≤ x, c(x) ` ϕ+
f (p) E2 :: Σ, y; Γ ` ∃x.y ≤ x ∧ c(x)

Σ, y; Γ `1↓x. c(x) ∧ ϕ+
f (p)

(1)

Given t0, i, δ such that,
∀t ∈ range(δ),∃n ≥ 0, t = t0 + n · ı (2)
δ(x′) ≤ δ(y′) if x′ appears before y′ in Σ, y (3)
δ(y) = t0 + i · ı (4)
� δΓ (5)

By E2 and (5),
� δ(∃x.y ≤ x ∧ c(x)) (6)
there exists τx such that � δ(y) ≤ τx and � δc(τx) (7)

let δ1 = δ, τx/x,
By (7) and (3),

δ1(x′) ≤ δ1(y′) if x appears before y in Σ, y, x (8)
By (5), (7),

� δ1(Γ, y ≤ x, c(x)) (9)
By assumptions that τx is a multiple of ı,
let n = i+ (τx − τ(i))/ı, let τ ′1 be a mapping containing the only following mapping τ ′(n) = τx,
By I.H. on ϕ+

f1(p), and (8) to (9),

there exists an action map a1, and τ1 such that start(τ1) = t0
∀j ∈ dom(a1), j ≥ n, and ∀j ∈ dom(τ1), j ≥ n (10)
p is the performer of all actions in the range of a1 (11)
for all P (~s) ∈ range(a1) there exists a P (~w) ∈ Af (ϕ+

f (p){t/x}) such that

there exists a substitution δ0, and P (δ0~s) = P (δ0(~w)). (12)
∀σ̂, σ̂ ⊇ (κp, ∅, ∅, a1, ∅, τ1, ∅), σ̂, n  δ1ϕ+

f (p) (13)

let τ ′ = τ ′1, a′ = a1

By (10), I holds
By (11), II holds
By (12), III holds
Give σ̂, σ̂ ⊇ (κp, ∅, ∅, a′, ∅, τ ′, ∅)
By (13) and (7) δ1 = δ, τ(n)/x and the definition of ,

σ̂, i  δ1↓x.c(x) ∧ ϕ+
f1(p) (14)

Case: ϕ+
f1 U (↓x. c(x) ∧ ϕ+

f2(p))

Given t0, i, δ,
By I.H. on ϕ+

f2(p), we can find a time point τx, which maps to state n such that

there exists a2 and τ2 that satisfy all the conditions,
and for all σ̂ ⊇ (κp, ∅, ∅, a2, ∅, τ2, ∅), σ̂, n  δ(↓x.c(x) ∧ ϕ+

f2(p)) (1)

By I.H. on δϕ+
f1(p), there exists ak and τk for each i ≤ k < n that satisfy all the conditions

and for all σ̂ ⊇ (κp, ∅, ∅, ak, ∅, τk, ∅), σ̂, k  δϕ+
f1(p) (2)

let a′ = a1 ∪
⋃n
k=i ak, τ ′ = τ t τ2 t

⊔n
k=i τk

By (1) and (2),
for all σ̂ ⊇ (κp, ∅, ∅, a′, ∅, τ ′, ∅), σ̂, i  δ(ϕ+

f1(p) U ↓x.c(x) ∧ ϕ+
f2(p)) (3)

Lemma D.17 (Monotonicity of ϕ−f ).
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If σ̂, i  ϕ−f (p), given σ̂′, such that σ̂ ] σ̂′ is defined, then σ̂ ] σ̂′, i  ϕ+
f (p)

Proof (sketch): By induction on the structure of ϕ−f .

Lemma D.18 (Feasibility of ϕ−f (p)).

If Σ; Γ ` ϕ−f (p) then ∀τ , ∀i, ∀δ such that

1. ∀t ∈ range(δ), ∃n ≥ 0, t = t0 + n · ı
2. δ(x) ≤ δ(y) if x appears before y in Σ

3. δ(z) = τ(i) where Σ = Σ′, z

4. � δΓ

there exists an action map ¬a′, and and τ ′ such that start(τ ′) = t0

I. ∀j ∈ dom(¬a′), j ≥ i, and ∀j ∈ dom(τ ′), j ≥ i
II. p is the performer of all actions in the range of ¬a′,

III. for all P (~s) ∈ range(¬a′) there exists a P (~w) ∈ Af (ϕ−f (p)) such that there exists a substitution δ0, and

P (δ0(~s) = P (δ0(~w)).

IV. for all σ̂, σ̂ ⊇ (κp, ∅, ∅, ∅,¬a′, τ ′, ∅), σ̂, i  δϕ−f (p)

Proof (sketch): By induction on the structure of ϕ−f (p). The proof is very similar to Lemma D.16.

D.2.4 Feasibility Theorems

To prove feasibility theorems, we first prove several stronger lemmas, which require stronger definitions for
feasibility. The general structure of these feasibility definitions are as follows.

H(σ̂, i, Sa, t0) = (σ̂ |i−1= ∅) ∧ (σ̂ |i= σ̂) ∧ start(τ) = t0 ∧ ∀p ∈ Sa, (σ̂ |Ap = ∅) ∧ ∀p ∈ Sa, κ ⊇ κp
G(a,¬a, τ, i, Sa, t0) = to be defined
V (σ̂, i,Φ) = to be defined

GF ′(0,Φ, Sa) = ∀σ̂0, H(σ̂0, 0, Sa, t0) ⊃
∃a′0,¬a′0, τ ′0, G(a′0,¬a′0, τ ′0, 0, Sa, t0)
∧ σ̂0 ] (∅, ∅, a′0,¬a′0, τ ′0, ∅) is well-defined
∧ ∀σ̂′, σ̂′ |0= ∅ ∧ σ̂′ ] σ̂0 ] (∅, ∅, a′0,¬a′0, τ ′0, ∅) is well-defined ⊃
V (σ̂′ ] σ̂0 ] (∅, ∅, a′0,¬a′0, τ ′0, ∅), 0,Φ)
∧ [ ]σ̂0,a′0,¬a′0,τ ′0

GF ′(j,Φ, Sa) =
GF ′(j − 1,Φ, Sa)[∀σ̂j , H(σ̂j , j, Sa, t0) ⊃

(∃a′j ,¬a′j , τ ′j , G(a′j ,¬a′j , τ ′j , j, Sa, t0)

∧
⊎j
k=0 σ̂k ]

⊎j
k=0(∅, ∅, a′k,¬a′k, τ ′k, ∅) is well-defined

∧ ∀σ̂′, σ̂′ |j= ∅ ∧ σ̂′ ]
⊎j
k=0 σ̂k ]

⊎j
k=0(∅, ∅, a′k,¬a′k, τ ′k, ∅) is well-defined ⊃

V (σ̂′ ]
⊎j
k=0 σ̂k ]

⊎j
k=0(∅, ∅, a′k,¬a′k, τ ′k, ∅), j,Φ)

∧ [ ]σ̂0,a′0,¬a′0,τ ′0,···σ̂j−1,a′j−1,¬a′j−1,τ
′
j−1

]σ̂0,a′0,¬a′0,τ ′0,···σ̂j−1,a′j−1,¬a′j−1,τ
′
j−1,σ̂j ,,a

′
j ,¬a′j ,τ ′j

The definition of GF ′(σ̂, j,Φ) is very similar to the definition of GF (σ̂, j,Φ). We left abstract, the
properties for the existentially quantified action map, inaction map and time stamp map; and the properties
of the final trace. Each feasibility lemma will instantiate G and V so that the induction hypothesis is strong
enough to prove the lemma.

In the special case when Sa = {p}, we simply write GF ′(j,Φ, p).
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Lemma D.19 (Feasibility of (r1) in one state).
Given state i, σ̂ such that κ ⊇ κp, and ∀j ≥ i,∀P ∈ a(j), p is not the performer of P , there exists a set

of inactions NAS such that

I. p is the performer of all actions in NAS,

II. for all P (~s) ∈ NAS there exists a P (~w) ∈ Ac(ϕ−c (p)) such that there exists a substitution δ, and
P (δ(~s) = P (δ(~w)).

III. given any well-formed trace σ̂′ such that ¬a′(i) ⊇ NAS, then Tr(σ̂′), i � ∀~x.ϕ−c ⊃ ϕpast

Proof.

Given σ̂1, Given any ~t for ~x
By Lemma D.13,
there exists a set of inactions NAS t such that,

p is the performer of all actions in NAS t (1)
for all P (~s) ∈ NAS t there exists a P (~w) ∈ Ac(ϕ−c (p)) such that (2)
there exists a substitution δ, and P (δ(~s)) = P (δ(~w)) (3)

for all σ̂,¬a(i) ⊇ NAS t, σ̂, i 1 ϕ−c (p){~t/~x} (4)
By Lemma D.10,

Tr(σ̂), i 2 ϕ−c (p){~t/~x} (5)
By Definitions of �,

Tr(σ̂), i � (ϕ−c (p) ⊃ ϕpast){~t/~x} (6)
let NAS =

⋃
t NAS t,

By (1), I. holds
By (2), and Lemma D.9 II. holds
By (6), Given any σ̂′ such that ¬a(i) ⊇ NAS

Tr(σ̂′), k � ∀~x(ϕ−c (p) ⊃ ϕpast) (7)

Lemma D.20 (Strong Feasibility of (r1)).

Let G(a,¬a, τ, i, p, t0) = (a = ∅) ∧ (dom(τ) = {i}) ∧ start(τ) = t0 ∧
dom(¬a) = {i} ∧ ∀P ∈ ¬a(i), p is the performer of P

Let V (σ̂, i,Φ) = ∀ G ϕi ∈ Φ,Tr(σ̂), i � ϕi

For all j, GF ′(j, {G (∀~x.ϕ−c (p) ⊃ ϕpast)}, p)

Proof. By induction on j.

Case: j = 0
Give any σ̂0 such that,

σ̂0 |Ap = ∅, κ0 ⊇ κp (1)
By Lemma D.19,
there exists a set of inactions NAS such that,

p is the performer of all actions in NAS , (2)
given any σ̂′ such that ¬a′(i) ⊇ NAS

if σ̂′ is well-formed, then Tr(σ̂′), i � ∀~x.ϕ−c ⊃ ϕpast (3)
let a′ = ∅,, τ ′(0) = τ0(0), ¬a′(0) = NAS
By (2),

G(a′,¬a′, τ ′, 0, p, t0) holds (4)
By the actions in σ̂0 and ¬a′ belong to different performers,

σ̂0 ] (∅, ∅, a′,¬a′, τ ′, ∅) is well-defined (5)
By (3) and (5),

Tr(σ̂0 ] (∅, ∅, a′,¬a′, τ ′, ∅)), 0 � ∀~x.(ϕ−c (p) ⊃ ϕpast) (6)
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Case: j = k
By I.H. on (k-1),

GF ′(k − 1, {∀~x.ϕ−c ⊃ ϕpast}, {p}) (1)
To show GF ′(k, {G (∀~x.ϕ−c (p) ⊃ ϕpast)}, {p}), we unfold GF ′(k − 1, {G (∀~x.ϕ−c (p) ⊃ ϕpast)}, {p}),
and the first k − 1 layers of alternating ∀ and ∃ quantification in GF ′(k, {G (∀~x.ϕ−c (p) ⊃ ϕpast)}, {p}),
will be discharged by GF ′(k − 1, {G (∀~x.ϕ−c (p) ⊃ ϕpast)}, {p}),
now we are obtained,

∀0 ≤ n < k, (σ̂n |n−1= ∅)(σ̂n |n= σ̂n), start(τn) = τ0(0), (σ̂n |Ap = ∅), κn ⊇ κp (2)
∀0 ≤ n < k, anp = ∅,∀P ∈,¬anp p is the performer of P , dom(¬anp) = dom(τnp) = {n} (3)
start(τnp) = τ0(0) (4)
Tr(σ̂0 ] (∅, ∅, ap0,¬ap0, τp0, ∅) ] · · · ] σ̂n ] (∅, ∅, apn,¬apn, τpn, ∅)), n � ∀~x.ϕ−c ⊃ ϕpast}, {p} (5)

Give any σ̂k, such that
(σ̂k |k−1= ∅)(σ̂k |k= σ̂k), (σ̂k |Ap = ∅), start(τk) = τ0(0), κk ⊇ κp (6)

Let σ̂ = σ̂0 ] (∅, ∅, a′0,¬a′0, τ ′0, ∅) ] · · · ] σ̂k,
By Lemma D.19,
there exists a set of inactions NAS such that,

p is the performer of all actions in NAS , (7)
give σ̂′ such that ¬a′(i) ⊇ NAS

if σ̂′ is well-formed, then Tr(σ̂′), i � ∀~x.ϕ−c ⊃ ϕpast (8)
let a′ = ∅, τ ′(k) = τk(k), ¬a′(k) = NAS
By (7), (2),

G(a′,¬a′, τ ′, k, p, τ0(0)) holds (9)
By the actions in σ̂k and ¬a′ belong to different performers,

σ̂ ] (∅, ∅, a′,¬a′, τ ′, ∅) is well-defined (10)
By (8) and (10),

Tr(σ̂ ] (∅, ∅, a′,¬a′, τ ′, ∅)), k � ∀~x.ϕ−c ⊃ ϕpast (11)

Lemma D.21 (Feasibility of (r2) in one state).
Given state σ̂, i such that κ ⊇ κp, ` ϕpast fin, ·; · ` ϕ+

f (p) sat and Af (ϕ+
f (p)) ` ϕpast, there exists a

finite action map ap, and τp

I. ∀j ∈ dom(ap), j ≥ i, ∀j ∈ dom(τp), j ≥ i, and start(τp) = start(τ)

II. p is the performer of all actions in the range of ap,

III. for all P (~s) ∈ range(ap) there exists a P (~w) ∈ Af (ϕ+
f (p)) such that there exists a substitution δ0, and

P (δ0(~s) = P (δ0(~w)).

IV. given any σ̂′ such that σ̂′ |i= ∅ and σ̂′ ] σ̂ ] (∅, ∅, ∅, ap, ∅, τp, ∅) is well-defined, then Tr(σ̂′ ] σ̂ ]
(∅, ∅, ∅, ap, ∅, τp, ∅)) � ∀~x.(ϕpast ⊃ ϕ+

f )

Proof.
Given σ̂, i, such that κ ⊇ κp
By Lemma D.4,

there is a finite set of substitutions ∆ such that ∀δ ∈ ∆,Tr(σ̂), i � δϕpast (1)
for each δ ∈ ∆,
By Lemma D.16,
there exists a finite action map aδp, and τ δp such that start(τ δp ) = τ(0)

∀j ∈ dom(aδp), j ≥ i (2)
p is the performer of all actions in the range of ap (3)
for all P (~s) ∈ range(aδp) there exists a P (~w) ∈ Af (δϕ+

f (p)) such that

there exists a substitution δ0, and P (δ0(~s)) = P (δ0(~w)). (4)
for all σ̂1, σ̂1 ⊇ (κp, ∅, ∅, aδp, ∅, τ δp , ∅), σ̂, i  δϕ+

f (p) (5)
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let ap =
⋃
δ a

δ
p, τp =

⋃
δ τ

δ
p ,

By (2), I. holds
By (3), II. holds
By (4) and Lemma D.9,

III. holds (6)
if σ̂ ] (∅, ∅, ∅, ap, ∅, τp, ∅) is well-defined,
Given any σ̂′, such that σ̂′ |i= ∅
By (5),

σ̂′ ] σ̂ ] (∅, ∅, ∅, ap, ∅, τp, ∅), i  δϕ+
f (p) (7)

By Lemma D.10,
Tr(σ̂′ ] σ̂ ] (∅, ∅, ∅, ap, ∅, τp, ∅)), i � δϕ+

f (p) (8)

By Lemma D.6, (6) and Lemma D.2,
Tr(σ̂′ ] σ̂ ] (∅, ∅, ∅, ap, ∅, τp, ∅)), i � δϕpast (9)
and ∀δ′ /∈ ∆,Tr(σ̂′ ] σ̂ ] (∅, ∅, ∅, ap, ∅, τp, ∅)), i 2 δ′ϕpast (10)

By Definitions of �, (9) and (8),
Tr(σ̂′ ] σ̂ ] (∅, ∅, ∅, ap, ∅, τp, ∅)), i � δ(ϕpast ⊃ ϕ+

f (p)) (11)

By Definitions of � and (11),
Tr(σ̂′ ] σ̂ ] (∅, ∅, ∅, ap, ∅, τp, ∅)), i � ∀~x.(ϕpast ⊃ ϕ+

f (p)) (12)

Lemma D.22 (Strong Feasibility of (r2)).

Let G(a,¬a, τ, i, p, t0) = (¬a = ∅) ∧ ∀k ∈ dom(a), k ≥ i ∧ ∀k ∈ dom(τ), k ≥ i ∧ start(τ) = t0 ∧
∀k ∈ dom(a),∀P ∈ a(k), p is the performer of P

Let V (σ̂, i,Φ) = ∀ G ϕi ∈ Φ,Tr(σ̂), i � ϕi

If ` ϕpast fin, ·; · ` ϕ+
f and Af (ϕ+

f (p)) ` ϕpast, then for all j, GF ′(j, {G (∀~x.ϕpast ⊃ ϕ+
f (p))}, p)

Proof. By induction on j.

Case: j = 0
Give any σ̂0 such that,

σ̂0 |Ap = ∅, κ0 ⊇ κp (1)
By Lemma D.21,
there exists a set of inactions a finite action map a′, and τ ′ such that,

start(τ ′) = τ0(0) (2)
∀n ∈ dom(a′), n ≥ i, p is the performer of all actions in the range of a′, (3)
given any σ̂′′ such that σ̂′′ |0= ∅ if σ̂′ ] σ̂0 ] (, ∅, ∅, a′, ∅, τ ′, ∅) is well-defined
then σ̂′′ ] σ̂0 ] (∅, ∅, ∅, a′, ∅, τ ′, ∅), 0 � ∀~x.ϕpast ⊃ ϕ+

f (4)

let ¬a′ = ∅,
By (3), (2),

G(a′,¬a′, τ ′, 0, p, τ0(0)) holds (5)
By the actions in σ̂0 and ¬a′ belong to different performers,

σ̂0 ] (∅, ∅, a′,¬a′, τ ′, ∅) is well-defined (6)
By (4),

Tr(σ̂′′ ] σ̂0 ] (∅, ∅, a′,¬a′, τ ′, ∅)), 0 � ∀~x.ϕpast ⊃ ϕ+
f (p) (7)

Case: j = k
By I.H. on (k-1),

GF ′(k − 1, {∀ G (~x.ϕpast ⊃ ϕ+
f (p))}, {p}) (1)

To show GF ′(k, {G (∀~x.ϕpast ⊃ ϕ+
f (p))}, {p}), we unfold GF ′(k − 1, {G (∀~x.ϕpast ⊃ ϕ+

f (p))}, {p}),
and the first k − 1 layers of alternating ∀ and ∃ quantification in GF ′(k, {G (∀~x.ϕpast ⊃ ϕ+

f (p))}, {p}),
will be discharged by GF ′(k − 1, {G (∀~x.ϕpast ⊃ ϕ+

f (p))}, {p}),
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now we are obtained,
∀0 ≤ n < k, (σ̂n |n−1= ∅)(σ̂n |n= σ̂n), start(τn) = τ0(0), (σ̂n |Ap = ∅), κn ⊇ κp (2)
(¬anp = ∅),∀m ∈ dom(anp),m ≥ n (3)
start(τnp) = τ0(0) (4)
∀P ∈ range(apn), p is the performer of P (5)

Give any σ̂k, such that
(σ̂k |k−1= ∅)(σ̂k |k= σ̂k), (σ̂k |Ap = ∅), start(τk) = τ0(0), κk ⊇ κp (6)

Let σ̂ = σ̂0 ] (∅, ∅, a′0,¬a′0, τ ′0, ∅) ] · · · ] σ̂k,
By Lemma D.21,
there exists a set of inactions a finite action map a′, and τ ′ such that,

∀n ∈ dom(a′), n ≥ i, p is the performer of all actions in the range of a′, (7)
∀n ∈ τ(a′), n ≥ i, and start(τ ′) = τ0(0) (8)
given σ̂′′ such that σ̂′′ |k= ∅ if σ̂′′ ] σ̂ ] (, ∅, ∅, a′, ∅, τ ′, ∅) is well-defined
then σ̂′′ ] σ̂ ] (∅, ∅, ∅, a′, ∅, τ ′, ∅), k � ∀~x.ϕpast ⊃ ϕ+

f (9)

let ¬a′ = ∅,
By (7), (8),

G(a′,¬a′, τ ′, 0, p, τ0(0)) holds (10)
By the actions in σ̂k and ¬a′ belong to different performers,

σ̂ ] (∅, ∅, a′,¬a′, τ ′, ∅) is well-defined (11)
By (9),

Tr(σ̂′′ ] σ̂ ] (∅, ∅, a′,¬a′, τ ′, ∅)), 0 � ∀~x.ϕpast ⊃ ϕ+
f (p) (12)

Lemma D.23 (Feasibility of (r3) in one state).
Given state i, σ̂ such that κ ⊇ κp,
·; · ` ϕ−f (p) sat there exists a finite action map ¬ap, and τp

I. ∀j ∈ dom(¬ap), j ≥ i, ∀j ∈ dom(τp), j ≥ i, and start(τp) = start(τ)

II. p is the performer of all actions in the range of ¬ap,

III. for all P (~s) ∈ range(¬ap) there exists a P (~w) ∈ Af (ϕ−f (p)) such that there exists a substitution δ0, and

P (δ0(~s) = P (δ0(~w)).

IV. given any σ̂′ such that σ̂′ |i= ∅ and σ̂′]σ̂](∅, ∅, ∅, ap, ∅, τp, ∅) is well-defined, then σ̂′]σ̂](∅, ∅, ∅, ∅,¬ap, τp, ∅) �
∀~x.ϕpast ⊃ ϕ−f

Proof (sketch): Similar to the proof of Lemma D.19

Lemma D.24 (Strong Feasibility of (r3)).

Let G(a,¬a, τ, i, p, t0) = (¬a = ∅) ∧ ∀k ∈ dom(a), k ≥ i ∧ ∀k ∈ dom(τ), k ≥ i ∧ start(τ) = t0 ∧
∀k ∈ dom(a),∀P ∈ a(k), p is the performer of P

Let V (σ̂, i,Φ) = ∀ G ϕi ∈ Φ,Tr(σ̂), i � ϕi

For all j, GF ′(j, {G (∀~x.ϕpast ⊃ ϕ−f (p))}, p)

Proof (sketch): Similar to the proof of Lemma D.20

Theorem D.25 (Feasibility of a single responsibility).

F1. G ∀~x.ϕ−c (p) ⊃ ϕpast is feasible for agent p

F2. G ∀~x.ϕpast ⊃ ϕ+
f (p) is feasible for agent p if ` ϕpast fin, ·; · ` ϕ+

f and Af (ϕ+
f (p)) ` ϕpast

F3. G ∀~x.ϕpast ⊃ ϕ−f (p) is feasible
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Proof.
F1. By Lemma D.20.
F2. By Lemma D.22.
F3. By Lemma D.24.

Lemma D.26 (Feasibility compositions for one agent in one state). Let Φ be a set of responsibilities, and
Φ = Φc,Φf+,Φf− where ∀ G ϕ ∈ Φc, ϕ is of the form ∀~x.ϕ−c (p) ⊃ ϕpast, ∀ G ϕ ∈ Φf+, ϕ is of the form
∀~x.ϕpast ⊃ ϕ+

f (p), and ∀ G ϕ ∈ Φf−, ϕ is of the form ∀~x.ϕpast ⊃ ϕ−f (p).

1. for all G (∀~x.ϕpast ⊃ ϕ−f (p)) ∈ Φf−, ·; · ` ϕ−f sat

2. for all G (∀~x.ϕpast ⊃ ϕ+
f (p)) ∈ Φf+, ` ϕpast fin, ·; · ` ϕ+

f sat and Af (ϕ+
f (p)) ` ϕpast

3. for any two responsibilities G (∀ ~x1.ϕpast1 ⊃ ϕ+
f1(p)) ∈ Φf+, G (∀ ~x2.ϕpast2 ⊃ ϕ+

f2(p)) ∈ Φf+,

Af (ϕ+
fj(p)) ` ϕpasti (i = 1, 2, j = 1, 2, i 6= j)

4. for any two responsibilities G (∀ ~x1.ϕpast1 ⊃ ϕ+
f1(p)) ∈ Φf+, G (∀ ~x2.ϕpast2 ⊃ ϕ−f2(p)) ∈ Φf−, for all δ,

δAf (ϕ+
f1(p)) ∩ δAf (ϕ+

f2(p)) = ∅
5. for any two responsibilities G (∀ ~x1.ϕpast1 ⊃ ϕ+

f1(p)) ∈ Φf+, G (∀ ~x2.ϕ
−
c2(p) ⊃ ϕpast2) ∈ Φc,

(a) either for all δ, δAf (ϕ+
f1(p)) ∩ δAc(ϕ−c2(p)) = ∅

(b) or ϕpast1 = ϕP , and for all P ∈ Ac(ϕ−c2(p)), for each mgu δ such that δP ∈ δ(Af (ϕ+
f1(p))),

δϕp ` δϕpast2

Given any σ̂, i such that

1. κ ⊇ κp,

2. ∀j ≥ i, ∀P ∈ a(j) such that p is the performer of P , ∃ G ϕi ∈ Φf+ and ϕi = ∀~x.ϕpast ⊃ ϕ+
f (p), ∃k,

∃δ such that k < i, and σ̂, k � δϕpast, and σ̂, k  δϕ+
f ∃P ′ ∈ Af (δϕ+

f (p)), and ∃δ0, and P = δ0P ′

3. ∀j ≥ i, ∀P ∈ ¬a(j) such that p is the performer of P , ∃ G ϕi ∈ Φf− and ϕi = ∀~x.ϕpast ⊃ ϕ−f (p),

∃P ′ ∈ Af (ϕ−f (p)), ∃δ0, and P = δ0P ′

there exists ap, ¬ap, τp, such that

1. ∀k ∈ dom(ap), k ≥ i, ∀k ∈ dom(¬ap), k ≥ i ∧ and ∀k ∈ dom(τp), k ≥ i and start(τp) = start(τ)

2. ∀P ∈ range(ap), p is the performer of P ∧
3. ∀P ∈ range(¬ap), p is the performer of P ∧
4. ∀k ∈ dom(ap),∀P ∈ ap(k), ∃ G (∀~x.ϕpast ⊃ ϕ+

f (p)) ∈ Φf+, ∃δ such that σ̂ ] (∅, ∅, ap,¬ap, τp, ∅), i �
δϕpast, and σ̂ ] (∅, ∅, ap,¬ap, τp, ∅), i  δϕ+

f ∃P ′ ∈ Af (δϕ+
f (p)), and ∃δ0, and P = δ0P ′

5. ∀P ∈ (¬ap(i)), ∃ G ϕi ∈ Φf−, such that ∃P ′ ∈ Af (ϕ−f (p)) ∪ Ac(ϕ−c (p)), ∃δ0, and δ0P = δ0P ′

6. ∀k ∈ dom(¬ap), k > i,∀P ∈ ap(k), ∃P ′ ∈ Af (ϕ−f (p)), ∃δ0, and δ0P = δ0P ′.

7. σ̂ ] (∅, ∅, ap,¬ap, τp, ∅)) is well-defined,

8. given any σ̂′ such that σ̂′ |i= ∅, ∀ϕi ∈ Φ, if σ̂′ ] σ̂ ] (∅, ∅, ap,¬ap, τp, ∅) is well-defined then σ̂′ ] σ̂ ]
(∅, ∅, ap,¬ap, τp, ∅), i  ϕi

Proof.
Given any σ̂, i, such that

κ ⊇ κp (1)
∀j ≥ i,∀P ∈ a(j) such that p is the performer of P ,
∃ G ϕi ∈ Φf+ and ϕi = ∀~x.ϕpast ⊃ ϕ+

f (p),∃k,∃δ such that k < i,

and σ̂, k � δϕpast, σ̂, k  δϕ
+
f , and ∃P ′ ∈ Af (δϕ+

f (p)), and ∃δ0, suchthatP = δ0P ′ (2)

∀j ≥ i,∀P ∈ ¬a(j) such that p is the performer of P ,
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∃ G ϕi ∈ Φf− and ϕi = ∀~x.ϕpast ⊃ ϕ−f (p),∃P ′ ∈ Af (ϕ−f (p)),∃δ0, and δ0P = δ0P ′ (3)

let t0 = start(τ),
Given any ϕr1 = ∀~x.ϕ−c (p) ⊃ ϕpast such that G ϕr1 ∈ Φc,

Given any ~t for ~x,
By Lemma D.13,
there exists a set of inactions NAS t such that,

p is the performer of all actions in NAS t (4)
for all P (~s) ∈ NAS t there exists a P (~w) ∈ Ac(ϕ−c (p)) such that
there exists a substitution δ, and P (δ(~s)) = P (δ(~w)) (5)

for all σ̂,¬a(i) ⊇ NAS t, σ̂, i 1 ϕ−c (p){~t/~x} (6)
Given any ϕr2 = ∀~x.ϕpast ⊃ ϕ+

f (p) such that G ϕr2 ∈ Φf+,

By Lemma D.4,
there is a finite set of substitutions ∆ such that ∀δ ∈ ∆,Tr(σ̂), i � δϕpast (7)

for each δ ∈ ∆,
By Lemma D.16,
there exists a finite action map aδp, and τ δp � t0

∀j ∈ dom(aδp), j ≥ i,∀j ∈ dom(τ δp ), j ≥ i (8)
p is the performer of all actions in the range of ap (9)
for all P (~s) ∈ range(ap) there exists a P (~w) ∈ Af (δϕ+

f (p)) such that

there exists a substitution δ0, and P (δ0(~s)) = P (δ0(~w)). (10)
for all well-formed σ̂1, σ̂1 ⊇ (κp, ∅, ∅, aδp, ∅, τ δp , ∅), σ̂1, i  δϕ

+
f (p) (11)

let a′p =
⋃
δ a

δ
p, τp1 =

⊔
δ τ

δ
p ,

Given any ϕr3 = ∀~x.ϕpast ⊃ ϕ−f (p) such that G ϕr2 ∈ Φf+,

for each ~t for ~x,
By Lemma D.18,
there exists a map ¬at, and τt � t0

∀j ∈ dom(at), j ≥ i,∀j ∈ dom(τt), j ≥ i (12)
p is the performer of all actions in the range of at (13)
for all P (~s) ∈ range(at) there exists a P (~w) ∈ Af (δϕ−f (p)) such that

there exists a substitution δ0, and P (δ0(~s)) = P (δ0(~w)). (14)
for all well-formed σ̂1, σ̂1 ⊇ (κp, ∅, ∅, ∅, at, ∅, τt, ∅), σ̂1, i  δϕ

−
f (p) (15)

let ¬a′p =
⋃
t at, τp2 =

⊔
t τt,

let ap = a′p, ¬ap = ¬a′p ∪ {i 7→
⋃
t NAS t\{a′p(i) ∪ a(i)}}, τp = τp1 t τp2

By (8), (12), 1 holds
By (4), (9), (13), 2 and 3 hold
By (10), 4 holds
By (5), (14), 5 and 6 hold
By assumption 3 about ϕi, (5), (10) and (14),

∀k, ap(k) ∩ ¬ap(k) = ∅ (16)
By the definition of ¬ap,

∀k, a(k) ∩ ¬ap(k) = ∅ (17)
By assumption 3 about ϕi, (3) and (10),

∀k,¬a(k) ∩ ap(k) = ∅ (18)
By (16), (17) and (18),

σ̂ ] (∅, ∅, ap,¬ap, τp, ∅) is well-defined (19)
Given any σ̂′, such that σ̂′ |i= ∅, and given any G ∀~x.ϕpast ⊃ ϕ−f (p) ∈ Φf−
By (15),

σ̂′ ] σ̂ ] (∅, ∅, ap,¬ap, τp, ∅)  ∀~x.ϕpast ⊃ ϕ−f (p) (20)

Given any σ̂′, such that σ̂′ |i= ∅, and given any G ∀~x.ϕpast ⊃ ϕ+
f (p) ∈ Φf+

By Lemma D.6, (7) and assumption 3 about ϕi, and Lemma D.2
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given the finite set ∆ such that ∀δ ∈ ∆,Tr(σ̂), i � δϕpast and ∀δ′ /∈ ∆,Tr(σ̂), i 2 δ′ϕpast
Tr(σ̂′ ] σ̂ ] (∅, ∅, ∅, ap,¬ap, τp, ∅)), i � δϕpast (21)
and ∀δ′ /∈ ∆,Tr(σ̂′ ] σ̂ ] (∅, ∅, ∅, ap,¬ap, τp, ∅)), i 2 δ′ϕpast (22)

By (10),
σ̂′ ] σ̂ ] (∅, ∅, ap,¬ap, τp, ∅)  ϕ+

f (p) (23)

By Definitions of ,(21), (22) and (23),
Tr(σ̂′ ] σ̂ ] (∅, ∅, ∅, ap,¬ap, τp, ∅)), i  ∀~x.(ϕpast ⊃ ϕ+

f (p)) (24)

Given any σ̂′, such that σ̂′ |i= ∅, and given any G ∀~x1.ϕ
−
c (p) ⊃ ϕpast1 ∈ Φc

Given any δx1 for ~x1, there are three cases (i), (ii) and (iii)
(i). NAS t ∩ (a′p(i) ∪ a(i)) = ∅,
By (6),

σ̂′ ] σ̂ ] (∅, ∅, ap,¬ap, τp, ∅) 1 δx1ϕ
−
c (p) (25)

(ii). ∃P ∈ NAS t ∩ (ap(i)),
By (5),

∃P1 ∈ Ac(δx1ϕ
−
c (p)) such that ∃δ1 and P = δ1P1 (26)

By Lemma D.9,
∃P ′1 ∈ Ac(ϕ−c (p)) such that P1 = δx1P

′
1 (27)

By the definition of ap and (10),
∃ G (∀~x2.ϕpast2 ⊃ ϕ+

f (p)) ∈ Φf+ such that ∃δx2 andTr(σ̂), i � δx2(ϕpast2), and (28)

∃P2 ∈ Af (δx2(ϕ+
f (p))) such that ∃δ2 and P = δ2P2 (29)

By Lemma D.9,
∃P ′2 ∈ Af (ϕ+

f (p)) such that P2 = δx2P
′
2 (30)

By (26), (27), (29) and (30),
there exists a most general unifier δ0 for P ′1 and P ′2, such that
δ1δx1 = δ′δ0, δ2δx2 = δ′δ0, (31)

By assumption 4(b) about ϕi ∈ Φ,
ϕpast2 = ϕP and δ0ϕpast2 ` δ0ϕpast1 (32)

By substitution lemma on the proof rules,
δ′δ0ϕpast2 ` δ′δ0ϕpast1 (33)

By Lemma D.6, (28) and assumption 2 about ϕi and Lemma D.2
Tr(σ̂′ ] σ̂ ] (∅, ∅, ∅, ap,¬ap, τp, ∅)), i � δx2ϕpast2 (34)

By Proof theory is sound, (34), (31) and δx1ϕpast1 is closed,
Tr(σ̂′ ] σ̂ ] (∅, ∅, ∅, ap,¬ap, τp, ∅)), i � δx1ϕpast1 (35)

(iii). ∃P ∈ NAS t ∩ a(i)),
By (5),

∃P1 ∈ Ac(δx1ϕ
−
c (p)) such that ∃δ1 and P = δ1P1 (36)

By Lemma D.9,
∃P ′1 ∈ Ac(ϕ−c (p)) such that P1 = δx1P

′
1 (37)

By (2),
∃ G (∀~x2.ϕpast2 ⊃ ϕ+

f (p)) ∈ Φf+ such that ∃k, k < i, ∃δx2 and Tr(σ̂), i � δx2(ϕpast2), and (38)

σ̂, k  δx2ϕ
+
f2 and ∃P2 ∈ Af (δx2(ϕ+

f (p))) such that ∃δ2 and P = δ2P2 (39)

By Lemma D.9,
∃P ′2 ∈ Af (ϕ+

f (p)) such that P2 = δx2P
′
2 (40)

By (37), (38), (39) and (40),
there exists a most general unifier δ0 for P ′1 and P ′2, such that
δ1δx1 = δ′δ0, δ2δx2 = δ′δ0, (41)

By assumption 5(b) about ϕi ∈ Φ,
ϕpast2 = ϕP and δ0ϕpast2 ` δ0ϕpast1 (42)

By substitution lemma on the proof rules,
δ′δ0ϕpast2 ` δ′δ0ϕpast1 (43)

By Lemma D.6, (39) and assumption 3 about ϕi and Lemma D.2
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Tr(σ̂′ ] σ̂ ] (∅, ∅, ∅, ap,¬ap, τp, ∅)), k � δx2ϕpast2 (44)
By ϕpast2 = ϕP and Lemma D.3,

Tr(σ̂′ ] σ̂ ] (∅, ∅, ∅, ap,¬ap, τp, ∅)), i � δx2ϕpast2 (45)
By Proof theory is sound, (45), (43) and δx1ϕpast1 is closed,

Tr(σ̂′ ] σ̂ ] (∅, ∅, ∅, ap,¬ap, τp, ∅)), i � δx1ϕpast1 (46)
By (25), (35), (46),

Tr(σ̂′ ] σ̂ ] (∅, ∅, ∅, ap,¬ap, τp, ∅)), i  ∀~x1.ϕ
−
c1(p) ⊃ ϕpast1 (47)

We make a small change to the structure of GF ′. Now the abstract predicate G takes an additionally
argument σ̂. In the definition of GF ′, G is supplied with

⊎j
k=0 σ̂k ]

⊎j−1
k=0(∅, ∅, a′k,¬a′k, τ ′k, ∅) at level j.

Lemma D.27 (Strong feasibility compositions for one agent). Let Φ be a set of responsibilities, and Φ =
Φc,Φf+,Φf− where ∀ G ϕ ∈ Φc, ϕ is of the form ∀~x.ϕ−c (p) ⊃ ϕpast, ∀ G ϕ ∈ Φf+, ϕ is of the form
∀~x.ϕpast ⊃ ϕ+

f (p), and ∀ G ϕ ∈ Φf−, ϕ is of the form ∀~x.ϕpast ⊃ ϕ−f (p).

Let G(σ̂, a,¬a, τ, i, p, t0) = ∀k ∈ dom(a), k ≥ i ∧ ∀k ∈ dom(¬a), k ≥ i ∧ ∀k ∈ dom(τ), k ≥ i ∧ start(τ) = t0 ∧
∀P ∈ range(a), p is the performer of P ∧
∀P ∈ range(¬a), p is the performer of P ∧
∀k ∈ dom(a),∀P ∈ a(k),
∃ G ϕi ∈ Φf+, ∃δ such that σ̂, i � δϕpast, and
σ̂, i  δϕ+

f ∃P ′ ∈ Af (δϕ+
f (p)), and ∃δ0, and P = δ0P ′

∀P ∈ (¬a(i)), ∃P ′ ∈ Af (ϕ−f (p)) ∪ Ac(ϕ−c (p)), ∃δ0, and δ0P = δ0P ′

∀k ∈ dom(¬a), k > i,∀P ∈ a(k),
∃P ′ ∈ Af (ϕ−f (p)), ∃δ0, and δ0P = δ0P ′.

Let V (σ̂, i,Φ) = ∀ G ϕi ∈ Φ,Tr(σ̂), i  ϕi

then for all j, GF ′(j,Φ, p) if

1. for all G (∀~x.ϕpast ⊃ ϕ−f (p)) ∈ Φf−, ·; · ` ϕ−f sat

2. for all G (∀~x.ϕpast ⊃ ϕ+
f (p)) ∈ Φf+, ` ϕpast fin, ·; · ` ϕ+

f and Af (ϕ+
f (p)) ` ϕpast

3. for any two responsibilities G (∀ ~x1.ϕpast1 ⊃ ϕ+
f1(p)) ∈ Φf+, G (∀ ~x2.ϕpast2 ⊃ ϕ+

f2(p)) ∈ Φf+,

Af (ϕ+
fj(p)) ` ϕpasti (i = 1, 2, j = 1, 2, i 6= j)

4. for any two responsibilities G (∀ ~x1.ϕpast1 ⊃ ϕ+
f1(p)) ∈ Φf+, G (∀ ~x2.ϕpast2 ⊃ ϕ−f2(p)) ∈ Φf−, for all δ,

δAf (ϕ+
f1(p)) ∩ δAf (ϕ+

f2(p)) = ∅

5. for any two responsibilities G (∀ ~x1.ϕpast1 ⊃ ϕ+
f1(p)) ∈ Φf+, G (∀ ~x2.ϕ

−
c2(p) ⊃ ϕpast2) ∈ Φc,

(a) either for all δ, δAf (ϕ+
f1(p)) ∩ δAc(ϕ−c2(p)) = ∅

(b) or ϕpast1 = ϕP , and for all P ∈ Ac(ϕ−c2(p)), for each mgu δ such that δP ∈ δ(Af (ϕ+
f1(p))),

δϕp ` δϕpast2

Proof. By induction on j.

Case: j = 0
Give any σ̂0 such that,

σ̂0 |Ap = ∅, κ0 ⊇ κp (1)
By Lemma D.26,, there exists a′0, ¬a′0, τ ′0 such that

G(σ̂0 ] (∅, ∅, a′0,¬a′0, τ ′0, ∅), a′0,¬a′0, τ ′0, i, p, t0) holds (2)
and given σ̂′′ such that σ̂′′ |0= ∅, σ̂′′ ] σ̂0 ] (∅, ∅, a′0,¬a′0, τ ′0, ∅) is well-defined
implies V (σ̂′′ ] σ̂0 ] (∅, ∅, a′0,¬a′0, τ ′0, ∅), 0,Φ) (3)
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Case: j = k
By I.H. on (k-1),

GF ′(k − 1,Φ, {p}) (1)
To show GF ′(k,Φ, {p}), we unfold GF ′(k − 1,Φ, {p}),
and the first k − 1 layers of alternating ∀ and ∃ quantification in GF ′(k,Φ, {p}),
will be discharged by GF ′(k − 1,Φ, {p}),
now we are obtained, ∀0 ≤ n < k,

(σ̂n |n−1= ∅)(σ̂n |n= σ̂n), start(τn) = τ0(0), (σ̂n |Ap = ∅), κn ⊇ κp (2)
∀m ∈ dom(apn),m ≥ n, ∀m ∈ dom(¬apn),m ≥ n (3)
∀m ∈ dom(τpn),m ≥ n ∧ start(τpn) = τ0(0) (4)
∀P ∈ range(apn), p is the performer of P (5)
∀P ∈ range(¬apn), p is the performer of P (6)
∀P ∈ range(apn),∃ G (∀~x.ϕpast ⊃ ϕ+

f (p)) ∈ Φf+,∃δ such that⊎n
m=0 σ̂m ]

⊎n
m=0(∅, ∅, a′m,¬a′m, τ ′m, ∅), n � δϕpast,

and
⊎n
m=0 σ̂m ]

⊎n
m=0(∅, ∅, a′m,¬a′m, τ ′m, ∅), n  δϕ+

f

∃P ′ ∈ Af (δϕ+
f (p)), and ∃δ0, and P = δ0P ′ (7)

∀P ∈ range(¬apn(i))∃P ′ ∈ Af (ϕ−f (p)) ∪ Ac(ϕ−c (p))∃δ0, and δ0P = δ0P ′ (8)

∀m ∈ dom(¬apn) and m > n,∀P ∈ apn(m)∃P ′ ∈ Af (ϕ−f (p)),∃δ0, and δ0P = δ0P ′ (9)

given any σ̂′ such that σ̂′ |n= ∅, ∀ϕ ∈ Φ,
σ̂′ ] σ̂0 ] (∅, ∅, ap0,¬ap0, τp0, ∅) ] · · · ] σ̂n ] (∅, ∅, apn,¬apn, τpn, ∅), n  ϕ (10)

Give any σ̂k, such that
(σ̂k |k−1= ∅)(σ̂k |k= σ̂k), (σ̂k |Ap = ∅), start(τk) = τ0(0), κk ⊇ κp (11)

Let σ̂ = σ̂0 ] (∅, ∅, a′0,¬a′0, τ ′0, ∅) ] · · · ] σ̂k,
By Lemma D.12, Lemma D.15, Lemma D.17, Lemma D.2, (7) ,

∀P ∈ range(apn),∃ G (∀~x.ϕpast ⊃ ϕ+
f (p)) ∈ Φf+,∃δ such that

σ̂, n � δϕpast, and σ̂, n  δϕ+
f

∃P ′ ∈ Af (δϕ+
f (p)), and ∃δ0, and P = δ0P ′ (12)

By Lemma D.26, for all exists a′k, ¬a′k, τ ′k such that
G(σ̂(∅, ∅, a′k,¬a′k, τ ′k, ∅), a′k,¬a′k, τ ′k, i, p, τ0(0)) holds (13)
and given σ̂′′ such that σ̂′′ |k= ∅, σ̂′′ ] σ̂ ] (∅, ∅, a′k,¬a′k, τ ′k, ∅) is well-defined
implies V (σ̂′′ ] σ̂ ] (∅, ∅, a′k,¬a′k, τ ′k, ∅), k,Φ) (14)

Theorem D.28 (Feasibility compositions for one agent). Let Φ be a set of responsibilities, and Φ =
Φc,Φf+,Φf− where ∀ G ϕ ∈ Φc, ϕ is of the form ∀~x.ϕ−c (p) ⊃ ϕpast, ∀ G ϕ ∈ Φf+, ϕ is of the form
∀~x.ϕpast ⊃ ϕ+

f (p), and ∀ G ϕ ∈ Φf−, ϕ is of the form ∀~x.ϕpast ⊃ ϕ−f (p).
Φ is feasible for agent p if

1. for all G (∀~x.ϕpast ⊃ ϕ−f (p)) ∈ Φf−, ·; · ` ϕ−f sat

2. for all G (∀~x.ϕpast ⊃ ϕ+
f (p)) ∈ Φf+, ` ϕpast fin, ·; · ` ϕ+

f and Af (ϕ+
f (p)) ` ϕpast

3. for any two responsibilities G (∀ ~x1.ϕpast1 ⊃ ϕ+
f1(p)) ∈ Φf+, G (∀ ~x2.ϕpast2 ⊃ ϕ+

f2(p)) ∈ Φf+,

Af (ϕ+
fj(p)) ` ϕpasti (i = 1, 2, j = 1, 2, i 6= j)

4. for any two responsibilities G (∀ ~x1.ϕpast1 ⊃ ϕ+
f1(p)) ∈ Φf+, G (∀ ~x2.ϕpast2 ⊃ ϕ−f2(p)) ∈ Φf−, for all δ,

δAf (ϕ+
f1(p)) ∩ δAf (ϕ+

f2(p)) = ∅

5. for any two responsibilities G (∀ ~x1.ϕpast1 ⊃ ϕ+
f1(p)) ∈ Φf+, G (∀ ~x2.ϕ

−
c2(p) ⊃ ϕpast2) ∈ Φc,

(a) either for all δ, δAf (ϕ+
f1(p)) ∩ δAc(ϕ−c2(p)) = ∅
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(b) or ϕpast1 = ϕP , and for all P ∈ Ac(ϕ−c2(p)), for each mgu δ such that δP ∈ δ(Af (ϕ+
f1(p))),

δϕp ` δϕpast2

Proof. By Lemma D.27.

Lemma D.29. For all σ̂, i and σ̂′ such that σ̂]σ̂′ is well-defined σ̂′ |i−1= ∅, and ∀P ∈ range(a′)∪range(¬a′),
p is not a performer, if σ̂, i  ϕi where ϕi is ∀~x.ϕ−c (p) ⊃ ϕpast or ∀~x.ϕpast ⊃ ϕ+

f (p), or ∀~x.ϕpast ⊃ ϕ−f (p),
and p ` ϕpast StrictPast then σ̂ ] σ̂′, i  ϕi
Proof (sketch): By Lemma D.12, Lemma D.15, Lemma D.17, Lemma D.5,

Lemma D.30 (Strong feasibility composition for multiple agents). Given a group of agents Sa, let Φp be
the set of responsibilities for each agent p ∈ Sa. Φp = Φpc ,Φ

p
f+,Φ

p
f− where ∀ G ϕ ∈ Φpc , ϕ is of the form

∀~x.ϕ−c (p) ⊃ ϕpast, ∀ G ϕ ∈ Φpf+, ϕ is of the form ∀~x.ϕpast ⊃ ϕ+
f (p), and ∀ G ϕ ∈ Φpf−, ϕ is of the form

∀~x.ϕpast ⊃ ϕ−f (p).

Let G(σ̂, a,¬a, τ, i, Sa) = ∀k ∈ dom(a), k ≥ i ∧ ∀k ∈ dom(¬a), k ≥ i ∧ ∀k ∈ dom(τ), k ≥ i ∧ start(τ) = t0 ∧
∀P ∈ range(a), ∃p ∈ Sa, such that p is the performer of P ∧
∀P ∈ range(¬a), ∃p ∈ Sa, such that p is the performer of P ∧
∀k ∈ dom(a),∀P ∈ a(k), ∃p ∈ Sa,
∃ G ϕi ∈ Φf+, ∃δ such that σ̂, i � δϕpast, and
σ̂, i  δϕ+

f ∃P ′ ∈ Af (δϕ+
f (p)), and ∃δ0, and P = δ0P ′

∀P ∈ (¬a(k)), ∃p ∈ Sa, ∃P ′ ∈ Af (ϕ−f (p)) ∪ Ac(ϕ−c (p)), ∃δ0, and δ0P = δ0P ′

∀k ∈ dom(¬a), k > i,∀P ∈ a(k), ∃p ∈ Sa, ∃P ′ ∈ Af (ϕ−f (p)), ∃δ0, and δ0P = δ0P ′.

Let V (σ̂, i,Φ) = ∀ G ϕi ∈ Φ,Tr(σ̂), i  ϕi

For all j, GF ′(j,
⋃
p Φp, Sa), if for each G ϕi ∈ Φ, the past formula in ϕi is ϕpast, and p ` ϕpast StrictPast,

and

1. for all G (∀~x.ϕpast ⊃ ϕ−f (p)) ∈ Φf−, ·; · ` ϕ−f sat

2. for all G (∀~x.ϕpast ⊃ ϕ+
f (p)) ∈ Φf+, ` ϕpast fin, ·; · ` ϕ+

f and Af (ϕ+
f (p)) ` ϕpast

3. for any two responsibilities G (∀ ~x1.ϕpast1 ⊃ ϕ+
f1(p)) ∈ Φf+, G (∀ ~x2.ϕpast2 ⊃ ϕ+

f2(p)) ∈ Φf+,

Af (ϕ+
fj(p)) ` ϕpasti (i = 1, 2, j = 1, 2, i 6= j)

4. for any two responsibilities G (∀ ~x1.ϕpast1 ⊃ ϕ+
f1(p)) ∈ Φf+, G (∀ ~x2.ϕpast2 ⊃ ϕ−f2(p)) ∈ Φf−, for all δ,

δAf (ϕ+
f1(p)) ∩ δAf (ϕ+

f2(p)) = ∅

5. for any two responsibilities G (∀ ~x1.ϕpast1 ⊃ ϕ+
f1(p)) ∈ Φf+, G (∀ ~x2.ϕ

−
c2(p) ⊃ ϕpast2) ∈ Φc,

(a) either for all δ, δAf (ϕ+
f1(p)) ∩ δAc(ϕ−c2(p)) = ∅

(b) or ϕpast1 = ϕP , and for all P ∈ Ac(ϕ−c2(p)), for each mgu δ such that δP ∈ δ(Af (ϕ+
f1(p))),

δϕp ` δϕpast2

Proof. By induction on j. Similar to the proof of Lemma D.27. We use Lemma D.26 to obtain planned
trace for each agent, then we use Lemma D.29 to compose traces from different agents.

Theorem D.31 (Feasibility composition for multiple agents). Given a group of agents Sa, let Φp be the
set of responsibilities for each agent p ∈ Sa. Φp = Φpc ,Φ

p
f+,Φ

p
f− where ∀ G ϕ ∈ Φpc , ϕ is of the form

∀~x.ϕ−c (p) ⊃ ϕpast, ∀ G ϕ ∈ Φpf+, ϕ is of the form ∀~x.ϕpast ⊃ ϕ+
f (p), and ∀ G ϕ ∈ Φpf−, ϕ is of the form

∀~x.ϕpast ⊃ ϕ−f (p).
The union of Φp for all p ∈ Sa is feasible for Sa. if for each G ϕi ∈ Φ, the past formula in ϕi is ϕpast,

and p ` ϕpast StrictPast, and
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1. for all G (∀~x.ϕpast ⊃ ϕ−f (p)) ∈ Φf−, ·; · ` ϕ−f sat

2. for all G (∀~x.ϕpast ⊃ ϕ+
f (p)) ∈ Φf+, ` ϕpast fin, ·; · ` ϕ+

f and Af (ϕ+
f (p)) ` ϕpast

3. for any two responsibilities G (∀ ~x1.ϕpast1 ⊃ ϕ+
f1(p)) ∈ Φf+, G (∀ ~x2.ϕpast2 ⊃ ϕ+

f2(p)) ∈ Φf+,

Af (ϕ+
fj(p)) ` ϕpasti (i = 1, 2, j = 1, 2, i 6= j)

4. for any two responsibilities G (∀ ~x1.ϕpast1 ⊃ ϕ+
f1(p)) ∈ Φf+, G (∀ ~x2.ϕpast2 ⊃ ϕ−f2(p)) ∈ Φf−, for all δ,

δAf (ϕ+
f1(p)) ∩ δAf (ϕ+

f2(p)) = ∅

5. for any two responsibilities G (∀ ~x1.ϕpast1 ⊃ ϕ+
f1(p)) ∈ Φf+, G (∀ ~x2.ϕ

−
c2(p) ⊃ ϕpast2) ∈ Φc,

(a) either for all δ, δAf (ϕ+
f1(p)) ∩ δAc(ϕ−c2(p)) = ∅

(b) or ϕpast1 = ϕP , and for all P ∈ Ac(ϕ−c2(p)), for each mgu δ such that δP ∈ δ(Af (ϕ+
f1(p))),

δϕp ` δϕpast2

Proof. By Lemma D.30.
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